NRTS660MFD, NRVTS660MFD

Very Low Forward Voltage Trench-based Schottky Rectifier

This trench Schottky rectifier in the dual flag SO-8 flat lead package offers designers a unique degree of versatility and design freedom. The two devices are electrically independent and can be used separately, as common cathode, as common anode or in series as a function of board level layout. The exposed pad design provides low thermal resistance. The clip attach design creates a package with very efficient die size to board area ratio. While thermal performance is nearly the same as the DPAK package height and board footprint are less than half.

Trench Schottky technology provides a superior forward voltage/leakage tradeoff compared to planar Schottky. The reverse switching characteristics are extremely stable over temperature minimizing switching power loss in high frequency applications.

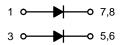
Features

- New Package Provides Capability of Inspection and Probe After Board Mounting
- Low Forward Voltage Drop
- 175°C Operating Junction Temperature
- NRV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable
- These are Pb–Free and Halide–Free Devices

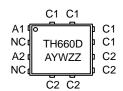
Mechanical Characteristics:

- Case: Epoxy, Molded
- Epoxy Meets Flammability Rating UL 94–0 @ 0.125 in.
- Lead Finish: 100% Matte Sn (Tin)
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Device Meets MSL 1 Requirements

Applications


- Excellent Alternative to DPAK in Space—Constrained Automotive Applications
- Output Rectification in Switching Power Supplies
- Freewheeling Diode used with Inductive Loads
- Automotive LED Lighting (Interior and Exterior)

ON Semiconductor®


www.onsemi.com

TRENCH SCHOTTKY RECTIFIER 6 AMPERES (3x2), 60 VOLTS

MARKING DIAGRAM

TH660D = Specific Device Code A = Assembly Location

Y = Year
W = Work Week
ZZ = Lot Traceability

ORDERING INFORMATION

Device	Package	Shipping†
NRTS660MFDT1G	DFN8 (Pb-Free)	1500 / Tape & Reel
NRTS660MFDT3G	DFN8 (Pb-Free)	5000 / Tape & Reel
NRVTS660MFDT1G	DFN8 (Pb-Free)	1500 / Tape & Reel
NRVTS660MFDT3G	DFN8 (Pb-Free)	5000 / Tape & Reel
NRVTS660MFDWT3G	DFN8 (Pb-Free)	5000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure. BRD8011/D.

NRTS660MFD, NRVTS660MFD

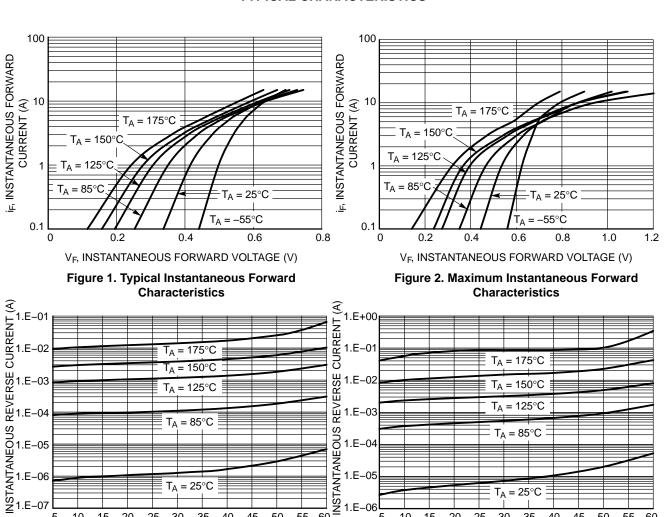
MAXIMUM RATINGS (per diode unless noted)

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage	V_{RRM}		V
Working Peak Reverse Voltage	V_{RWM}		
DC Blocking Voltage	V_R	60	
Average Rectified Forward Current (Rated V _R , T _C = 173°C)	I _{F(AV)}	3.0	А
Peak Repetitive Forward Current, (Rated V _R , Square Wave, 20 kHz, T _C = 172°C)	I _{FRM}	6.0	А
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	80	А
Storage Temperature Range	T _{stg}	-65 to +175	°C
Operating Junction Temperature	TJ	-55 to +175	°C
Unclamped Inductive Switching Energy (10 mH Inductor, Non-repetitive)	E _{AS}	10	mJ

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS (per diode unless noted)

Characteristic	Symbol	Тур	Max	Unit
Thermal Resistance, Junction-to-Lead, Steady State (Assumes 650 mm² 1 oz. copper bond pad, on a FR4 board)	ΨJCL	ı	2.1	°C/W
Thermal Resistance, Junction–to–Ambient, Steady State (Assumes 650 mm² 1 oz. copper bond pad, on a FR4 board)	$R_{ hetaJA}$	-	59	°C/W


ELECTRICAL CHARACTERISTICS (per diode unless noted)

Instantaneous Forward Voltage (Note 1)	٧ _F			V
$(i_F = 3.0 \text{ Amps}, T_J = 125^{\circ}\text{C})$		0.41	0.56	
$(i_F = 3.0 \text{ Amps}, T_J = 25^{\circ}\text{C})$		0.48	0.63	
$(i_F = 6.0 \text{ Amps}, T_J = 125^{\circ}\text{C})$		0.52	0.72	
$(i_F = 6.0 \text{ Amps}, T_J = 25^{\circ}\text{C})$		0.55	0.75	
Instantaneous Reverse Current (Note 1)	i _R			
(Rated dc Voltage, T _J = 125°C)		3.0	8	mA
(Rated dc Voltage, T _J = 25°C)		6.2	55	μΑ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 1. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

NRTS660MFD, NRVTS660MFD

TYPICAL CHARACTERISTICS

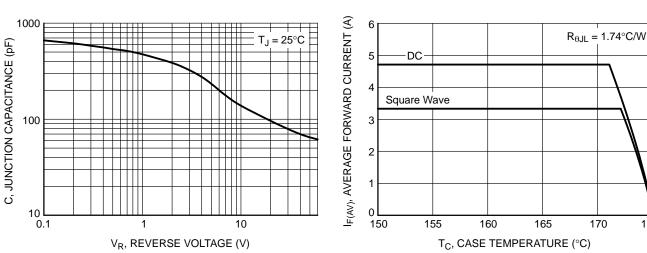
1.E-04

1.E-05

1.E-06

<u>~</u>

5


15 20 25 30 35

V_R, INSTANTANEOUS REVERSE VOLTAGE (V) Figure 3. Typical Reverse Characteristics

25 30 35 40 45 50

Ř

 $T_A = 25^{\circ}C$

55 60

Figure 5. Typical Junction Capacitance

Figure 6. Current Derating, Per Diode

 $T_A = 85^{\circ}C$

= 25°C

VR, INSTANTANEOUS REVERSE VOLTAGE (V)

Figure 4. Maximum Reverse Characteristics

55 60

175

NRTS660MFD, NRVTS660MFD

TYPICAL CHARACTERISTICS

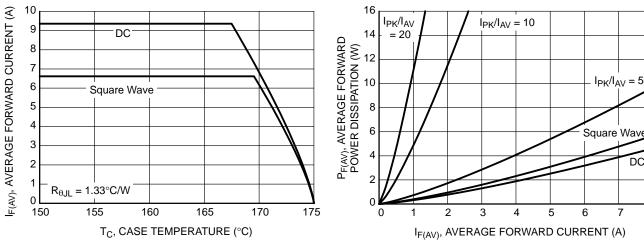


Figure 7. Current Derating, Per Device

Figure 8. Forward Power Dissipation

DC

8

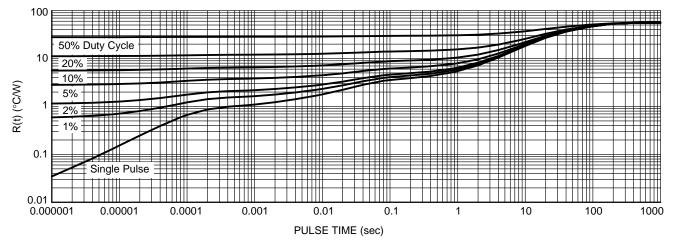
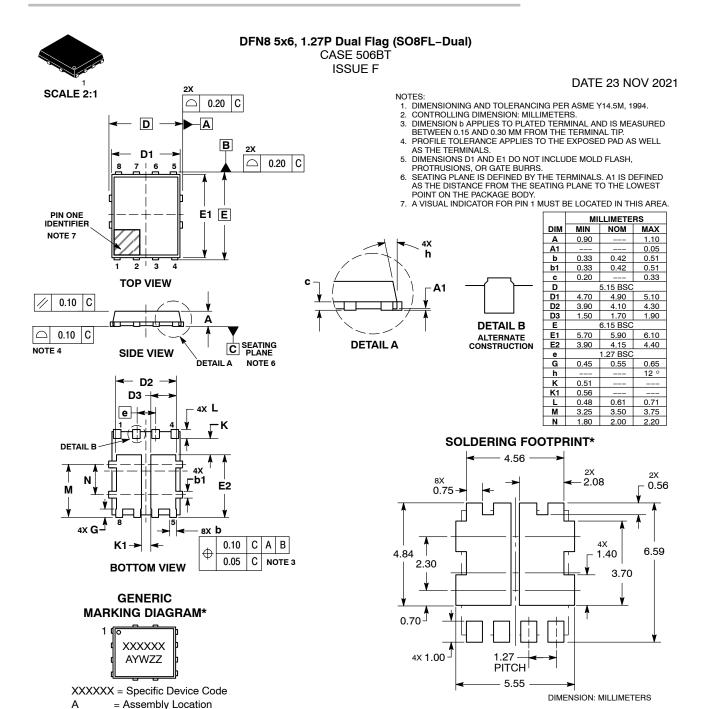



Figure 9. Thermal Response

DOCUMENT NUMBER:	98AON50417E	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TION: DFN8 5X6, 1.27P DUAL FLAG (SO8FL-DUAL)		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular e, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

= Year

not follow the Generic Marking.

= Work Week

= Lot Traceability *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "=", may or may not be present. Some products may

٧

W

ZZ

*For additional information on our Pb-Free strategy and soldering

Mounting Techniques Reference Manual, SOLDERRM/D.

details, please download the ON Semiconductor Soldering and

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales