Complementary Silicon Power Plastic Transistors These devices are designed for low voltage, low-power, high-gain audio amplifier applications. #### **Features** - High DC Current Gain - Low Collector-Emitter Saturation Voltage - High Current-Gain Bandwidth Product - Annular Construction for Low Leakage - These Devices are Pb-Free and are RoHS Compliant* #### **MAXIMUM RATINGS** | Rating | Symbol | Value | Unit | |---|-----------------------------------|--------------|------------| | Collector-Emitter Voltage | V _{CEO} | 40 | Vdc | | Collector-Base Voltage | V _{CB} | 25 | Vdc | | Emitter-Base Voltage | V _{EB} | 8.0 | Vdc | | Collector Current – Continuous | I _C | 5.0 | Adc | | Collector Current – Peak | I _{CM} | 10 | Adc | | Base Current | I _B | 1.0 | Adc | | Total Power Dissipation @ T _C = 25°C Derate above 25°C | P _D | 15
0.12 | W
mW/°C | | Total Power Dissipation @ T _C = 25°C Derate above 25°C | P _D | 1.5
0.012 | W
mW/°C | | Operating and Storage Junction
Temperature Range | T _J , T _{stg} | -65 to +150 | °C | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. #### THERMAL CHARACTERISTICS | Characteristic | Symbol | Max | Unit | |---|-----------------|------|------| | Thermal Resistance, Junction-to-Case | $R_{\theta JC}$ | 8.34 | °C/W | | Thermal Resistance, Junction-to-Ambient | $R_{\theta JA}$ | 83.4 | °C/W | # ON Semiconductor® http://onsemi.com # 5.0 AMPERES POWER TRANSISTORS COMPLEMENTARY SILICON 25 VOLTS, 15 WATTS # **MARKING DIAGRAM** ### ORDERING INFORMATION | Device | Package | Shipping | |----------|---------------------|-----------------| | MJE200G | TO-225
(Pb-Free) | 500 Units / Box | | MJE210G | TO-225
(Pb-Free) | 500 Units / Box | | MJE210TG | TO-225
(Pb-Free) | 500 Units / Box | ^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. # **ELECTRICAL CHARACTERISTICS** ($T_C = 25^{\circ}C$ unless otherwise noted) | Characteristic | Symbol | Min | Max | Unit | |---|-----------------------|----------------|--------------------|--------------| | OFF CHARACTERISTICS | - | | • | | | Collector–Emitter Sustaining Voltage (Note 1) $(I_C = 10 \text{ mAdc}, I_B = 0)$ | V _{CEO(sus)} | 25 | - | Vdc | | Collector Cutoff Current $(V_{CB} = 40 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 40 \text{ Vdc}, I_E = 0, T_J = 125^{\circ}\text{C})$ | I _{CBO} | -
- | 100
100 | nAdc
μAdc | | Emitter Cutoff Current (V _{BE} = 8.0 Vdc, I _C = 0) | I _{EBO} | _ | 100 | nAdc | | ON CHARACTERISTICS | <u> </u> | | | | | DC Current Gain (Note 1) $(I_C = 500 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$ $(I_C = 2.0 \text{ Adc}, V_{CE} = 1.0 \text{ Vdc})$ $(I_C = 5.0 \text{ Adc}, V_{CE} = 2.0 \text{ Vdc})$ | h _{FE} | 70
45
10 | -
180
- | - | | Collector–Emitter Saturation Voltage (Note 1) ($I_C = 500 \text{ mAdc}$, $I_B = 50 \text{ mAdc}$) ($I_C = 2.0 \text{ Adc}$, $I_B = 200 \text{ mAdc}$) ($I_C = 5.0 \text{ Adc}$, $I_B = 1.0 \text{ Adc}$) | V _{CE(sat)} | -
-
- | 0.3
0.75
1.8 | Vdc | | Base–Emitter Saturation Voltage (Note 1)
(I _C = 5.0 Adc, I _B = 1.0 Adc) | V _{BE(sat)} | - | 2.5 | Vdc | | Base–Emitter On Voltage (Note 1)
(I _C = 2.0 Adc, V _{CE} = 1.0 Vdc) | V _{BE(on)} | _ | 1.6 | Vdc | | DYNAMIC CHARACTERISTICS | | | • | • | | Current–Gain – Bandwidth Product (Note 2)
(I _C = 100 mAdc, V _{CE} = 10 Vdc, f _{test} = 10 MHz) | f _T | 65 | - | MHz | | Output Capacitance $(V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 0.1 \text{ MHz})$ MJE200G MJE210G | C _{ob} | <u>-</u> | 80
120 | pF | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics for the listed test condition performance may not be indicated by the Electrical Characteristics if operated under different conditions. 1. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \approx 2.0%. 2. $f_T = |h_{fe}| \bullet f_{test}$. Figure 1. Power Derating R_B and R_C VARIED TO OBTAIN DESIRED CURRENT LEVELS D_1 MUST BE FAST RECOVERY TYPE, e.g.: 1N5825 USED ABOVE $I_B\approx 100$ mA MSD6100 USED BELOW $I_B\approx 100$ mA Figure 3. Turn-On Time Figure 2. Switching Time Test Circuit Figure 4. Thermal Response Figure 5. Active Region Safe Operating Area There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_C - V_{CE}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 5 is based on $T_{J(pk)} = 150^{\circ}C$; T_C is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)} \le 150^{\circ}C$. $T_{J(pk)}$ may be calculated from the data in Figure 4. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. Figure 6. Turn-Off Time Figure 7. Capacitance **PNP** 25°C Figure 8. DC Current Gain $V_{CE} = 1.0 V$ $V_{CE} = 2.0 V$ 0.2 0.3 0.5 0.7 1.0 IC, COLLECTOR CURRENT (AMP) 2.0 3.0 5.0 Figure 9. "On" Voltage Figure 10. Temperature Coefficients # **MECHANICAL CASE OUTLINE** TO-225 CASE 77-09 **ISSUE AD** **DATE 25 MAR 2015** #### SCALE 1:1 **SIDE VIEW** - 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. NUMBER AND SHAPE OF LUGS OPTIONAL. | | MILLIMETERS | | | | | |-----|-------------|-------|--|--|--| | DIM | MIN MAX | | | | | | Α | 2.40 | 3.00 | | | | | A1 | 1.00 | 1.50 | | | | | b | 0.60 | 0.90 | | | | | b2 | 0.51 | 0.88 | | | | | С | 0.39 | 0.63 | | | | | D | 10.60 | 11.10 | | | | | E | 7.40 | 7.80 | | | | | е | 2.04 | 2.54 | | | | | L | 14.50 | 16.63 | | | | | L1 | 1.27 | 2.54 | | | | | Р | 2.90 | 3.30 | | | | | D | 3.80 | 4.20 | | | | ## **GENERIC MARKING DIAGRAM*** = Year WW = Work Week XXXXX = Device Code = Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. | , | | 2., 4. | CATHODE
ANODE
GATE | 2., 4. | BASE
COLLECTOR
EMITTER | , | | , | MT 1
MT 2
GATE | |-------|----------------------|--------|--------------------------|--------|------------------------------|------------------------------|---------------|--------|----------------------| | 2., 4 | . CATHODE
I. GATE | | MT 1
GATE | 2., 4. | SOURCE
GATE | STYLE 9:
PIN 1.
2., 4. | GATE
DRAIN | 2., 4. | SOURCE
DRAIN | | | B. ANODE | 3. | MT 2 | 3. | DRAIN | 3. | SOURCE | 3. | GATE | | DOCUMENT NUMBER: | 98ASB42049B | Electronic versions are uncontrolled except when accessed directly from the Document Repositor
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|-------------|---|-------------|--| | DESCRIPTION: | TO-225 | | PAGE 1 OF 1 | | ON Semiconductor and at a trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase #### ADDITIONAL INFORMATION **TECHNICAL PUBLICATIONS:** $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales