PNP Transistor, Low V_{CE(sat)} 100 V, 2.0 A

NSS1C200MZ4, NSV1C200MZ4

ON Semiconductor's e²PowerEdge family of low V_{CE(sat)} transistors are miniature surface mount devices featuring ultra low saturation voltage (V_{CE(sat)}) and high current gain capability. These are designed for use in low voltage, high speed switching applications where affordable efficient energy control is important.

Typical applications are DC-DC converters and power management in portable and battery powered products such as cellular and cordless phones, PDAs, computers, printers, digital cameras and MP3 players. Other applications are low voltage motor controls in mass storage products such as disc drives and tape drives. In the automotive industry they can be used in air bag deployment and in the instrument cluster. The high current gain allows e²PowerEdge devices to be driven directly from PMU's control outputs, and the Linear Gain (Beta) makes them ideal components in analog amplifiers.

- NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant

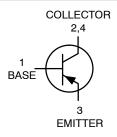
MAXIMUM RATINGS (T_A = 25°C)

Rating	Symbol	Max	Unit
Collector-Emitter Voltage	V _{CEO}	-100	Vdc
Collector-Base Voltage	V_{CBO}	-140	Vdc
Emitter-Base Voltage	V _{EBO}	-7.0	Vdc
Base Current - Continuous	Ι _Β	1.0	Α
Collector Current – Continuous	I _C	2.0	Α
Collector Current - Peak	I _{CM}	3.0	Α

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation T _A = 25°C Derate above 25°C	P _D (Note 1)	800 6.5	mW mW/°C
Thermal Resistance, Junction-to-Ambient	R _{θJA} (Note 1)	155	°C/W
Total Device Dissipation T _A = 25°C Derate above 25°C	P _D (Note 2)	2.0 15.6	W mW/°C
Thermal Resistance, Junction-to-Ambient	R _{θJA} (Note 2)	64	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	–55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


- FR-4 @ 7.6 mm², 1 oz. copper traces.
 FR-4 @ 645 mm², 1 oz. copper traces.

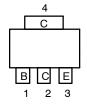
ON Semiconductor®

www.onsemi.com

-100 VOLTS, 2.0 AMPS PNP LOW V_{CE(sat)} TRANSISTOR

MARKING DIAGRAM

SOT-223 **CASE 318E** STYLE 1


= Assembly Location

= Year

= Work Week

= Specific Device Code = Pb-Free Package

PIN ASSIGNMENT

Top View Pinout

ORDERING INFORMATION

Device	Package	Shipping [†]
NSS1C200MZ4T1G NSV1C200MZ4T1G	SOT-223 (Pb-Free)	1000/ Tape & Reel
NSS1C200MZ4T3G	SOT-223 (Pb-Free)	4000/ Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS ($T_A = 25$ °C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector – Emitter Breakdown Voltage ($I_C = -10 \text{ mAdc}$, $I_B = 0$)	V _{(BR)CEO}	-100			Vdc
Collector – Base Breakdown Voltage (I _C = -0.1 mAdc, I _E = 0)	V _{(BR)CBO}	-140			Vdc
Emitter – Base Breakdown Voltage (I _E = -0.1 mAdc, I _C = 0)	V _{(BR)EBO}	-7.0			Vdc
Collector Cutoff Current (V _{CB} = -140 Vdc, I _E = 0)	I _{CBO}			-100	nAdc
Emitter Cutoff Current (V _{EB} = -6.0 Vdc)	I _{EBO}			-50	nAdc
ON CHARACTERISTICS					
DC Current Gain (Note 3) $ \begin{aligned} &(I_C = -10 \text{ mA, } V_{CE} = -2.0 \text{ V}) \\ &(I_C = -500 \text{ mA, } V_{CE} = -2.0 \text{ V}) \\ &(I_C = -1.0 \text{ A, } V_{CE} = -2.0 \text{ V}) \\ &(I_C = -2.0 \text{ A, } V_{CE} = -2.0 \text{ V}) \end{aligned} $	h _{FE}	150 120 80 50		360	
Collector – Emitter Saturation Voltage (Note 3) $ \begin{aligned} &(I_C = -0.1 \text{ A, } I_B = -0.010 \text{ A}) \\ &(I_C = -0.5 \text{ A, } I_B = -0.050 \text{ A}) \\ &(I_C = -1.0 \text{ A, } I_B = -0.100 \text{ A}) \\ &(I_C = -2.0 \text{ A, } I_B = -0.200 \text{ A}) \end{aligned} $	V _{CE} (sat)			-0.040 -0.080 -0.125 -0.220	V
Base – Emitter Saturation Voltage (Note 3) $(I_C = -1.0 \text{ A}, I_B = -0.100 \text{ A})$	V _{BE(sat)}			-0.950	V
Base – Emitter Turn–on Voltage (Note 3) (I _C = -1.0 A, V _{CE} = -2.0 V)	V _{BE(on)}			-0.850	V
Cutoff Frequency ($I_C = -100 \text{ mA}$, $V_{CE} = -5.0 \text{ V}$, $f = 100 \text{ MHz}$)	f _T		120		MHz
Input Capacitance (V _{EB} = 3.0 V, f = 1.0 MHz)	Cibo		200		pF
Output Capacitance (V _{CB} = 10 V, f = 1.0 MHz)	Cobo		22		pF

^{3.} Pulsed Condition: Pulse Width = 300 msec, Duty Cycle ≤ 2%.

TYPICAL CHARACTERISTICS

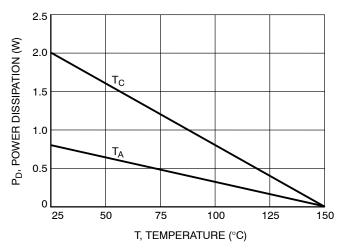


Figure 1. Power Derating

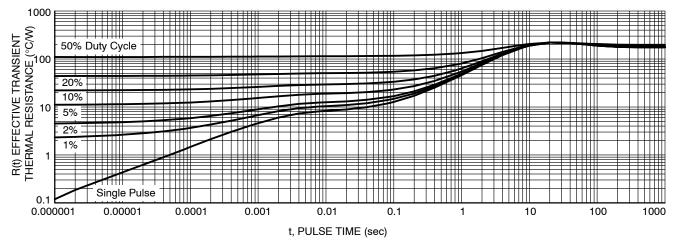


Figure 2. Thermal Resistance (FR-4 @ 7.6 mm², 1 oz. Cu trace)

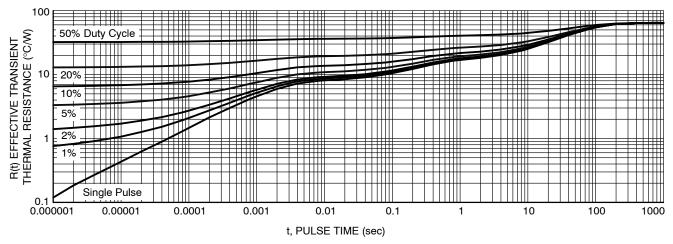


Figure 3. Thermal Resistance (FR-4 @ 645 mm², 1 oz. Cu trace)

TYPICAL CHARACTERISTICS

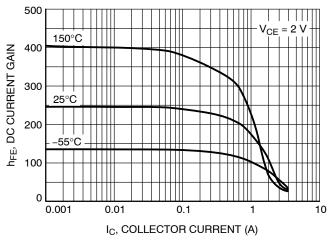
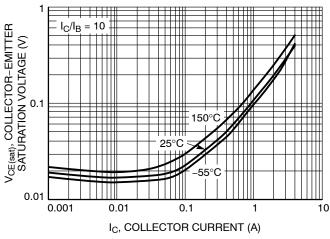



Figure 4. DC Current Gain

Figure 5. DC Current Gain

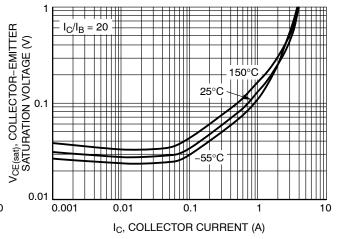
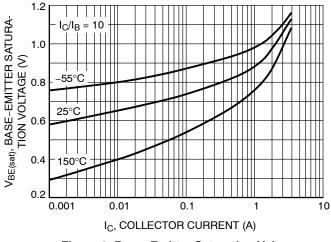



Figure 6. Collector-Emitter Saturation Voltage

Figure 7. Collector-Emitter Saturation Voltage

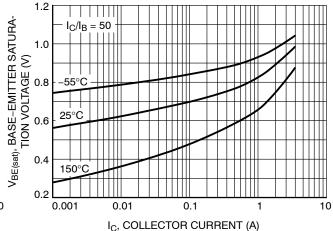
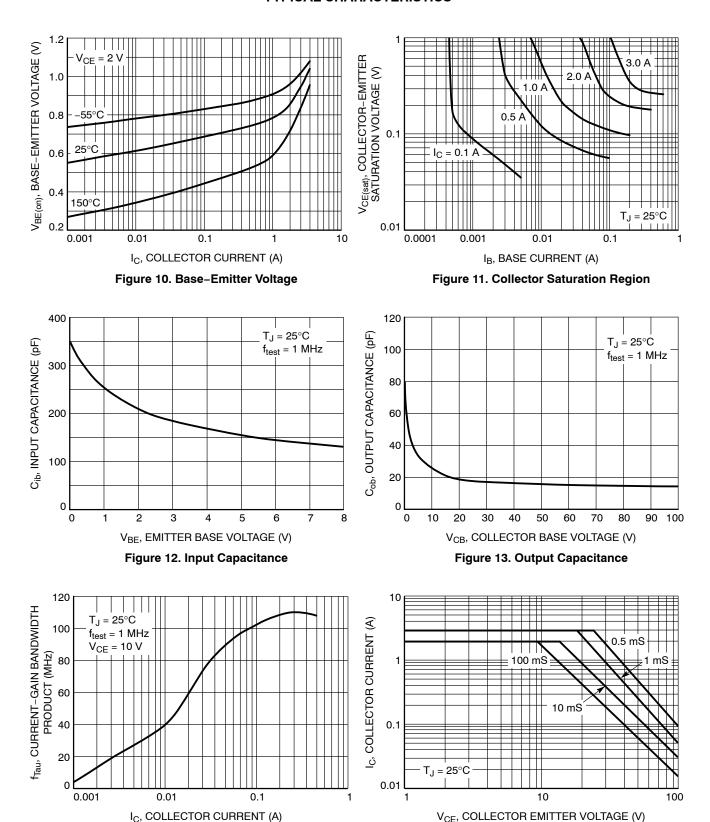
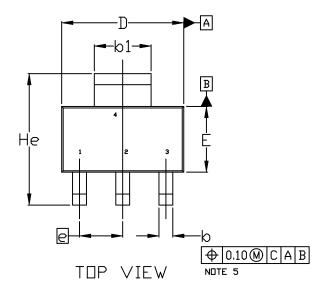


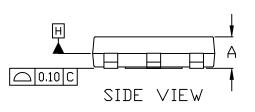
Figure 8. Base-Emitter Saturation Voltage

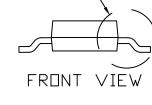
Figure 9. Base-Emitter Saturation Voltage

TYPICAL CHARACTERISTICS

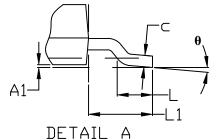


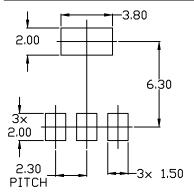

Figure 14. Current-Gain Bandwidth Product


Figure 15. Safe Operating Area



SOT-223 (TO-261) CASE 318E-04 ISSUE R


DATE 02 OCT 2018


SEE DETAIL A

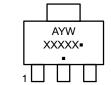
NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. DIMENSIONS D & E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
 MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.200MM PER SIDE.
- 4. DATUMS A AND B ARE DETERMINED AT DATUM H.
- 5. ALLIS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY.
- 6. POSITIONAL TOLERANCE APPLIES TO DIMENSIONS 6 AND 61.

	MILLIMETERS			
DIM	MIN.	N□M.	MAX.	
Α	1.50	1.63	1.75	
A1	0.02	0.06	0.10	
Ø	0.60	0.75	0.89	
b1	2.90	3.06	3.20	
U	0.24	0.29	0.35	
D	6.30	6.50	6.70	
E	3.30	3.50	3.70	
е	2.30 BSC			
L	0.20			
L1	1.50	1.75	2.00	
He	6.70	7.00	7.30	
θ	0°		10°	

RECOMMENDED MOUNTING FOOTPRINT

DOCUMENT NUMBER:	98ASB42680B	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-223 (TO-261)		PAGE 1 OF 2	


ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SOT-223 (TO-261) CASE 318E-04 ISSUE R

DATE 02 OCT 2018

STYLE 1: PIN 1. BASE 2. COLLECTOR 3. EMITTER 4. COLLECTOR	STYLE 2: PIN 1. ANODE 2. CATHODE 3. NC 4. CATHODE	STYLE 3: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN	STYLE 4: PIN 1. SOURCE 2. DRAIN 3. GATE 4. DRAIN	STYLE 5: PIN 1. DRAIN 2. GATE 3. SOURCE 4. GATE
STYLE 6: PIN 1. RETURN 2. INPUT 3. OUTPUT 4. INPUT	STYLE 7: PIN 1. ANODE 1 2. CATHODE 3. ANODE 2 4. CATHODE	STYLE 8: CANCELLED	STYLE 9: PIN 1. INPUT 2. GROUND 3. LOGIC 4. GROUND	STYLE 10: PIN 1. CATHODE 2. ANODE 3. GATE 4. ANODE
STYLE 11: PIN 1. MT 1 2. MT 2 3. GATE 4. MT 2	STYLE 12: PIN 1. INPUT 2. OUTPUT 3. NC 4. OUTPUT	STYLE 13: PIN 1. GATE 2. COLLECTOR 3. EMITTER 4. COLLECTOR		

GENERIC MARKING DIAGRAM*

A = Assembly Location

Y = Year W = Work Week

 $XXXXX \ = Specific \ Device \ Code$

= Pb-Free Package

(Note: Microdot may be in either location)
*This information is generic. Please refer to
device data sheet for actual part marking.
Pb-Free indicator, "G" or microdot "•", may
or may not be present. Some products may
not follow the Generic Marking.

DOCUMENT NUMBER:	98ASB42680B	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-223 (TO-261)		PAGE 2 OF 2	

ON Semiconductor and III are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales