onsemi

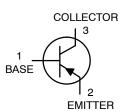
General Purpose Transistors PNP Silicon NST857AMX2, NST857BMX2

Features

• These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

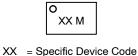
MAXIMUM RATINGS ($T_A = 25^{\circ}C$ unless otherwise noted)

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	-45	V
Collector-Base Voltage	V _{CBO}	-50	V
Emitter-Base Voltage	V _{EBO}	-5.0	V
Collector Current – Continuous	Ι _C	-100	mA


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Power Dissipation (Note 1) @ T _A = 25°C Derate above 25°C	P _D	166 1.39	mW mW/°C
Thermal Resistance, Junction-to-Ambient (Note 1)	R_{\thetaJA}	722	°C/W
Total Power Dissipation (Note 2) @ T _A = 25°C Derate above 25°C	P _D	640 5.41	mW mW/°C
Thermal Resistance, Junction-to-Ambient (Note 2)	R_{\thetaJA}	185	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	–55 to +150	°C


1. Surface-mounted on FR4 board using a 0.6 mm², 2 oz. Cu pad

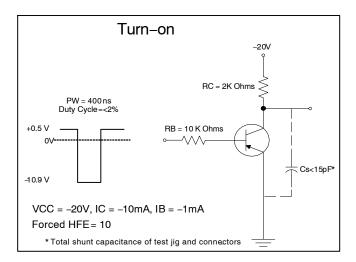
2. Surface-mounted on FR4 board using a 100 mm², 2 oz. Cu pad

MARKING DIAGRAM

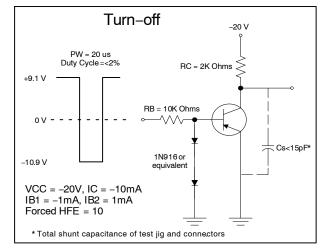
XX = Specific Device Code M = Date Code

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

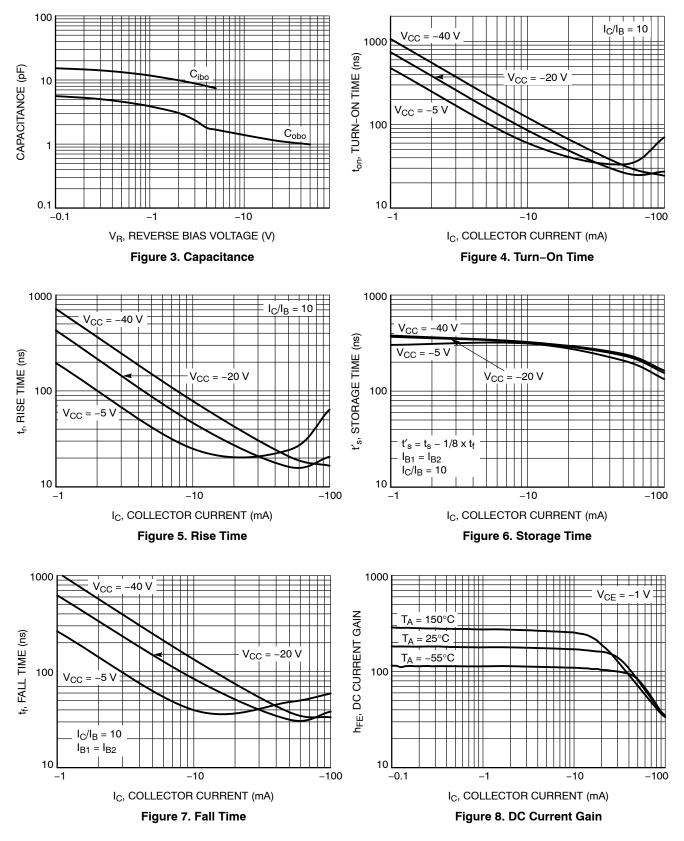

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS				•		
Collector – Emitter Breakdown Voltage	(I _C = -10 mA)	V _{(BR)CEO}	-45	-	-	V
Collector – Emitter Breakdown Voltage (I _C = -10 μA, V _{EB} = 0)	V _{(BR)CES}	-50	-	-	V
Collector – Base Breakdown Voltage	(I _C = −10 μA)	V _{(BR)CBO}	-50	-	-	V
Emitter-Base Breakdown Voltage	(I _E = −1.0 μA)	V _{(BR)EBO}	-5.0	-	-	V
Collector Cutoff Current (V _{CB} = -30 V) (V _{CB} = -30 V, T _A = 150° C)		I _{CBO}			-15 -4.0	nA μA
ON CHARACTERISTICS						
DC Current Gain (I _C = -100 μ A, V _{CE} = -1.0 V)	NST857A NST857B	h _{FE}		180 270		-
$(I_{C} = -2.0 \text{ mA}, V_{CE} = -5.0 \text{ V})$	NST857A NST857B		125 220	180 290	250 475	
Collector – Emitter Saturation Voltage ($I_C = -10 \text{ mA}, I_B = -0.5 \text{ mA}$) ($I_C = -100 \text{ mA}, I_B = -5.0 \text{ mA}$)		V _{CE(sat)}			-0.3 -0.65	V
Base – Emitter Saturation Voltage ($I_C = -10 \text{ mA}, I_B = -0.5 \text{ mA}$) ($I_C = -100 \text{ mA}, I_B = -5.0 \text{ mA}$)		V _{BE(sat)}		-0.7 -0.9		V
Base – Emitter On Voltage ($I_C = -2.0 \text{ mA}$, $V_{CE} = -5.0 \text{ V}$) ($I_C = -10 \text{ mA}$, $V_{CE} = -5.0 \text{ V}$)		V _{BE(on)}	-0.6 -		-0.75 -0.82	V
SMALL-SIGNAL CHARACTERISTICS						
Current-Gain - Bandwidth Product ($I_C = -10 \text{ mA}, V_{CE} = -5.0 \text{ Vdc}, f = 100 \text{ MHz}$)		f _T	100	-	-	MHz
Output Capacitance ($V_{CB} = -10 \text{ V}, \text{ f} = 1.0 \text{ MHz}$)		C _{ob}	-	-	4.5	pF
Noise Figure		NF	1			dB


Noise Figure $(I_{C} = -0.2 \text{ mA}, V_{CE} = -5.0 \text{ Vdc}, R_{S} = 2.0 \text{ k}\Omega, f = 1.0 \text{ kHz}, BW = 200 \text{ Hz})$

NST857B Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NST857A



10

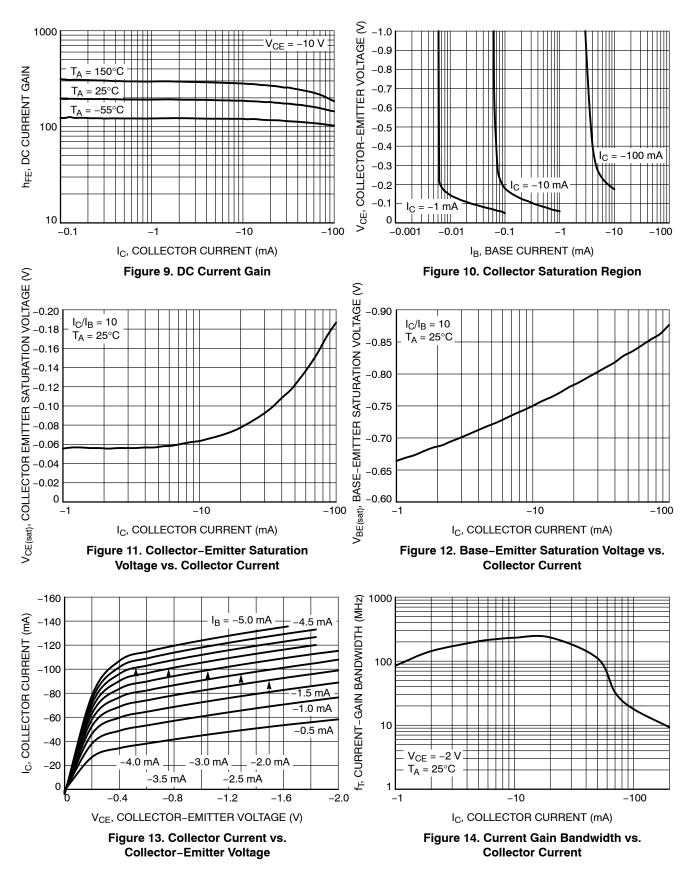
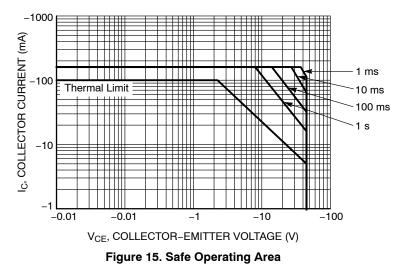
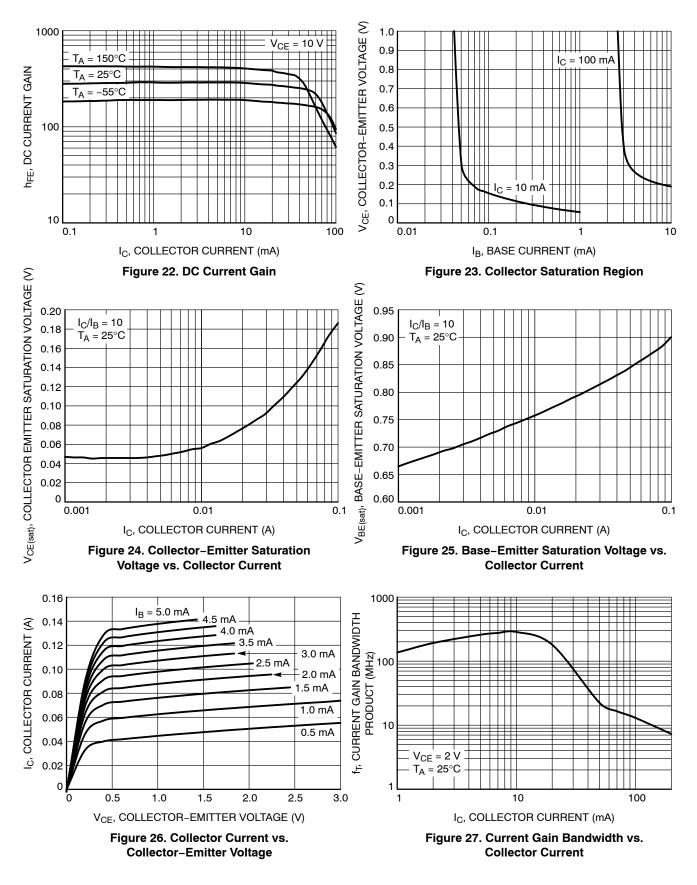
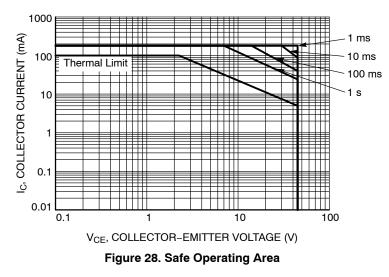

4.0

Figure 2. Storage and Fall Time Equivalent **Test Circuit**



TYPICAL CHARACTERISTICS – NST857AMX2

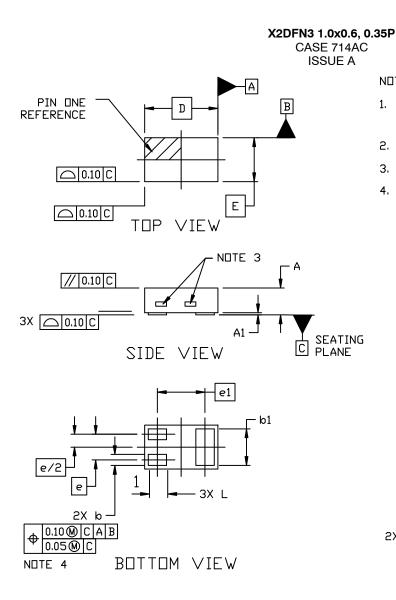

TYPICAL CHARACTERISTICS - NST857AMX2


10 1000 V_{CC} = 40 V $I_{\rm C}/I_{\rm B} = 10$ Cibo ton, TURN-ON TIME (ns) CAPACITANCE (pF) $V_{CC} = 20 V$ 100 $V_{CC} = 5 V$ 0.1 10 100 0.1 10 100 10 1 1 **REVERSE BIAS VOLTAGE (V)** I_C, COLLECTOR CURRENT (mA) Figure 16. Capacitance Figure 17. Turn-On Time 1000 1000 $I_{\rm C}/I_{\rm B}=10$ V_{CC} = 40 V ťs, STORAGE TIME (ns) t_r, RISE TIME (ns) V_{CC} = 40 V V_{CC} = 20 V V_{CC} = 20 V 100 V_{CC} = 5 V $V_{CC} = 5 V$ $t'_s = t_s - 1/8 \ x \ t_f$ $\mathsf{I}_{\mathsf{B}1} = \mathsf{I}_{\mathsf{B}2}$ $I_{\rm C}/I_{\rm B}=10$ 10 100 10 100 10 100 1 1 IC, COLLECTOR CURRENT (mA) I_C, COLLECTOR CURRENT (mA) Figure 18. Rise Time Figure 19. Storage Time 1000 1000 V_{CC} = 40 V I_{B1} $T_A = 150^{\circ}C$ h_{FE}, DC CURRENT GAIN $T_A = 25^{\circ}C$ t_f, FALL TIME (ns) $T_A = -55^{\circ}C$ V_{CC} = 20 V 100 100 $V_{CC} = 5 V$ 10 10 10 100 100 0.1 10 1 1 IC, COLLECTOR CURRENT (mA) IC, COLLECTOR CURRENT (mA) Figure 20. Fall Time Figure 21. DC Current Gain

TYPICAL CHARACTERISTICS – NST857BMX2

TYPICAL CHARACTERISTICS – NST857BMX2

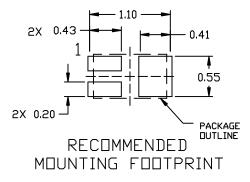
TYPICAL CHARACTERISTICS – NST857BMX2



ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
NST857AMX2T5G	AC	X2DFN3 (1.0 x 0.6 mm)	8,000 / Tape & Reel
NST857BMX2T5G	AJ	(1.0 x 0.0 mm)	

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


PACKAGE DIMENSIONS

NDTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. EXPOSED COPPER ALLOWED AS SHOWN.
- 4. ALL PAD LOCATIONS CONTROLLED WITH THIS POSITIONAL TOLERANCE.

	MILLIMETERS			
DIM	MIN.	MAX.	MAX.	
A	0.34	0.37	0.40	
A1	0.00		0.05	
ю	0.10	0.15	0.20	
b1	0.45	0.50	0.55	
D	0.95	1.00	1.05	
E	0.55	0.60	0.65	
e	0.35 BSC			
e1	0.65 BSC			
L	0.20	0.25	0.30	

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters, including "Typicals" must be validated for each customer applications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against al

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative