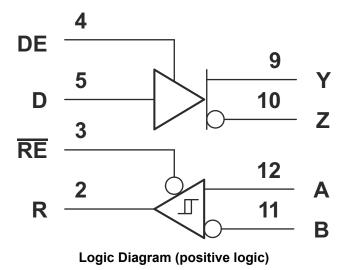


SN55LBC180, SN65LBC180, SN75LBC180 SLLS174I - FEBRUARY 1994 - REVISED OCTOBER 2022

Low-Power RS-485 Line Driver and Receiver Pairs

1 Features

- Designed for high-speed multipoint Data transmission over long cables
- Operate with pulse durations as low as 30 ns
- Low supply current: 5 mA maximum
- Meet or exceed the requirements of ANSI standard RS-485 and ISO 8482:1987(E)
- 3-State outputs for party-line buses
- Common-mode voltage range of -7 V to 12 V
- Thermal shutdown protection prevents driver damage from bus contention
- Positive and negative output current limiting
- Pin compatible with the SN75ALS180


2 Description

The SN55LBC180, SN65LBC180 and SN75LBC180 differential driver and receiver pairs are monolithic integrated circuits designed for bidirectional data communication over long cables that take on the characteristics of transmission lines. They are balanced, or differential, voltage mode devices that meet or exceed the requirements of industry standards ANSI RS-485 and ISO 8482:1987(E). These devices are designed using the TI proprietary LinBiCMOS™ with the low-power consumption of CMOS and the precision and robustness of bipolar transistors in the same circuit.

Package Information

PART NUMBER	PACKAGE ⁽¹⁾	BODY SIZE (NOM)
SN75LBC180 SN65LBC180	N (PDIP)	19.3 mm x 63.5 mm
	D (SOIC)	8.65 mm x 3.91 mm
ONOSEBO 100	RSA (QFN)	4 mm x 4 mm
SN55LBC180	RSA (QFN)	4 mm x 4 mm

For all available packages, see the orderable addendum at the end of the data sheet.

Table of Contents

1 Features	1	8 Detailed Description	15
2 Description	1	8.1 Function Tables	15
3 Description (Continued)	2	8.2 Schematics of Inputs and Outputs	16
4 Revision History		9 Application and Implementation	17
5 Pin Configuration and Functions	4	9.1 Application Information	17
6 Specifications	5	10 Device and Documentation Support	18
6.1 Absolute Maximum Ratings		10.1 Receiving Notification of Documentation Update	
6.2 Dissipation Rating Table	5	10.2 Support Resources	18
6.3 Recommended Operating Conditions	5	10.3 Trademarks	18
6.4 Thermal Information Table	6	10.4 Electrostatic Discharge Caution	18
6.5 Driver Section	6	10.5 Glossary	
6.6 Receiver Section	7	11 Mechanical, Packaging, and Orderable	
6.7 Typical Characteristics	9	Information	18
7 Parameter Measurement Information	12		

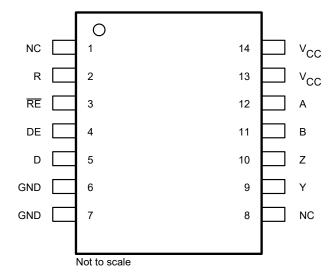
3 Description (Continued)

The SN55LBC180, SN65LBC180 and SN75LBC180 combine a differential line driver and receiver with 3-state outputs and operate from a single 5-V supply. The driver and receiver have active-high and active-low enables, respectively, which can be externally connected to function as a direction control. The driver differential outputs and the receiver differential inputs are connected to separate terminals for full-duplex operation and are designed to present minimum loading to the bus whether disabled or powered off ($V_{CC} = 0$). These parts feature a wide common-mode voltage range making them suitable for point-to-point or multipoint data-bus applications.

The devices also provide positive and negative output-current limiting and thermal shutdown for protection from line fault conditions. The line driver shuts down at a junction temperature of approximately 172°C.

The SN75LBC180 is characterized for operation over the commercial temperature range of 0°C to 70°C. The SN65LBC180 is characterized over the industrial temperature range of –40°C to 85°C.

The SN55LBC180 is characterized for operation over the military temperature range of -55°C to 125°C.


4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Cł	nanges from Revision H (June 2022) to Revision I (October 2022)	Page
•	Changed RSA (QFN) values in the <i>Thermal Information Table</i>	6
Cł	nanges from Revision G (April 2009) to Revision H (June 2022)	Page
•	Changed the Ordering Information Table to the <i>Package Information</i> table	
•	Added the Pin Configuration and Functions	
•	Added the Thermal Information Table	
•	Fixed the typo in the unit for the Receiver enable I _{IH} to change the unit from A to μA	
•	Updated Figure 6-1, Figure 6-2, and Figure 6-3, limiting the x-axis to a maximum of 70 mA driver output current.	ıt
•	Updated Figure 9-1 to remove legacy terminology	
Cł	nanges from Revision F (March 2009) to Revision G (April 2009)	Page
$\overline{}$	Added 3 ESD rows to the Absolute Maximum Ratings	
Cł	nanges from Revision E (February 2006) to Revision F (March 2009)	Page
•	Changed Differential to RS-485 in the data sheet title	1
•	Added device number SN55LBC180	1
•	Changed the word both to these	
•	Added the Ordering Information Table	
•	Changed the Description (Continued) section	
•	Changed and moved the Function Tables from the front page to the Description (Continued) section	
•	Deleted condition, moved cross reference	
•	Added all symbols in text that were not appearing in the PDF	
•	Deleted T _A row from the <i>Absolute Maximum Ratings</i>	
•	Added the last column to Dissipation Rating Table	
•	Added a row to T _A in the <i>Recommended Operating Conditions</i> for SN55LBC180	
•	Added SN55LB180 to the V _{OD} row.	
•	Change: moved 5 max values to the min column (-1.5, -50, -100, -0.8, -0.8)	
•	Added the Switching Characteristics: SN55LBC180 table	
•	Changed moved schematics to the Typical Characteristics section	10

5 Pin Configuration and Functions

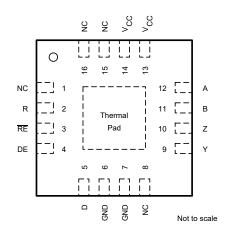


Figure 5-1. D OR N Package (SOIC) (Top View)

Figure 5-2. RSA Package (QFN) (Top View)

Table 5-1. Pin Functions

PIN NAME	PIN NO		TYPE ⁽¹⁾	DESCRIPTION		
PIN NAME	D Or N	RSA	ITPE	DESCRIPTION		
NC	1	1	NC	No internal connection		
R	2	2	0	Receiver output		
RE	3	3	I	Receiver enable input. Active low.		
DE	4	4	I	Driver enable input. Active high		
D	5	5	I	Driver input pin		
GND	6, 7	6, 7	G	Ground connection. Pins 6 and 7 are connected together internally.		
NC	8	8	NC	No internal connection		
Υ	9	9	0	Bus output port (complementary to Z)		
Z	10	10	0	Bus output port (complementary to Y)		
В	11	11	1	Bus input port (complementary to A)		
Α	12	12	I	Bus input port (complementary to B)		
V _{CC}	13, 14	13, 14	Р	Supply input pins. Pins 13 and 14 are connected together internally.		
NC	N/A	15, 16	NC	No internal connection		

⁽¹⁾ Signal Types: I = Input, O = Output, P= Power input,

6 Specifications

6.1 Absolute Maximum Ratings

See note (1)

				UNIT	
V _{CC}	Supply voltage range (2)		-0.3 to 7	V	
V _{BUS}	Bus voltage range (A, B, Y	, Z) ⁽²⁾	-10 to 15	V	
	Voltage range at D, R, DE,	RE (2)	-0.3 to V _{CC} + 0.5	V	
	Continuous total power dis	sipation ⁽³⁾	Internally limited		
	Total power dissipation		See Dissipation Rating Table		
T _{stg}	Storage temperature range)	-65 to 150	°C	
Io	Receiver output current rai	nge	-50 to 50	mA	
		HBM (Human Body Model) EIA/JESD22-A114	±4	kV	
ESD	Electrostatic discharge	MM (Machine Model) EIA/JESD22-A115	400	V	
		CDM (Charge Device Model) EIA/JESD22-C101	1.5	kV	

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 Dissipation Rating Table

PACKAGE ⁽¹⁾	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
D	950 mW	7.6 mW/°C	608 mW	494 mW	_
N	1150 mW	9.2 mW/°C	736 mW	598 mW	_
RSA	3333 mW	26.67 mW/°C	2133 mW	1733 mW	400 mW

⁽¹⁾ For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI Web site at www.ti.com.

6.3 Recommended Operating Conditions

O.O INCCOIN	menaca operating conditions					
			MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage		4.75	5	5.25	V
V _{IH}	High-level input voltage	D, DE, and RE	2			V
V _{IL}	Low-level input voltage	D, DE, and RE			0.8	V
V _{ID}	Differential input voltage		-6 ⁽¹⁾		6	V
V _O , V _I , or V _{IC}	Voltage at any bus terminal (separately or common mode)	A, B, Y, or Z	-7 ⁽¹⁾		12	V
	High-level output current	Y or Z			-60	m 1
I _{OH}		R			-8	mA
	Low-level output current	Y or Z			60	A
l _{OL}		R			8	mA
		SN55LBC180	-55		125	
T_{A}	Operating free-air temperature	SN65LBC180	-40		85	°C
		SN75LBC180	0		70	

⁽¹⁾ The algebraic convention where the least positive (more negative) limit is designated minimum, is used in this data sheet for the differential input voltage, voltage at any bus terminal, operating temperature, input threshold voltage, and common-mode output voltage.

⁽²⁾ All voltage values are with respect to GND.

⁽³⁾ The maximum operating junction temperature is internally limited. Use the dissipation rating table to operate below this temperature.

6.4 Thermal Information Table

THERMAL METRIC ⁽¹⁾		D (SOIC)	N (PDIP)	RSA (QFN)	UNIT
	THERMAL METRIC		14 Pins	16 Pins	UNIT
R _{θJA}	Junction-to-ambient thermal resistance	93.2	53.4	38.7	°C/W
R _{θJC(top)}	Junction-to-case (top) thermal resistance	47.5	40.0	35.6	°C/W
R _{θJB}	Junction-to-board thermal resistance	49.4	33.2	17.5	°C/W
Ψ _{JT}	Junction-to-top characterization parameter	11.2	19.0	1.1	°C/W
Ψ ЈВ	Junction-to-board characterization parameter	48.9	32.9	17.5	°C/W
R _{θJC(bot)}	Junction-to-case (bottom) thermal resistance	n/a	n/a	7.9	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC package thermal metrics application report.

6.5 Driver Section

6.5.1 Electrical Characteristics

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CC	ONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
V _{IK}	Input clamp voltage	I _I = -18 mA				-1.5	V
			SN55LBC180	1	2.5	5	
		$R_L = 54 \Omega$, See Figure 7-1	SN65LBC180	1.1	2.5	5	
137	Differential automorphisms (2)	occ riguic r-1	SN75LBC180	1.5	2.5	5	.,
V _{OD}	Differential output voltage magnitude ⁽²⁾		SN55LBC180	1	2.5	5	V
		$R_L = 60 \Omega$, See Figure 7-2	SN65LBC180	1.1	2	5	
		See Figure 7-2	SN75LBC180	1.5	2	5	
Δ V _{OD}	Change in magnitude of differential output voltage ⁽³⁾	See Figure 7-1 and Figure 7-2				±0.2	V
V _{oc}	Common-mode output voltage			1	2.5	3	V
Δ V _{OC}	Change in magnitude of common-mode output voltage ⁽³⁾	$R_L = 54 \Omega$,	See Figure 7-1			±0.2	V
Io	Output current with power off	V _{CC} = 0,	V _O = -7 V to 12 V			±100	μΑ
l _{oz}	High-impedance-state output current	$V_0 = -7 \text{ V to } 12 \text{ V}$				±100	μΑ
I _{IH}	High-level input current	V _I = 2.4 V				100	μA
I _{IL}	Low-level input current	V _I = 0.4 V				100	μA
I _{OS}	Short-circuit output current	-7 V ≤ V _O ≤ 12 V				±250	mA
	Cumply augrent	December of the state of	Outputs enabled			5	m A
I _{CC}	Supply current	Receiver disabled	Outputs disabled	,		3	mA

⁽¹⁾ All typical values are at $V_{CC} = 5 \text{ V}$ and $T_A = 25^{\circ}\text{C}$.

⁽²⁾ The minimum V_{OD} specification may not fully comply with ANSI RS-485 at operating temperatures below 0°C. System designers should take the possibly lower output signal into account in determining the maximum signal-transmission distance.

⁽³⁾ Δ|V_{OD}| and Δ|V_{OC}| are the changes in the steady-state magnitude of V_{OD} and V_{OC}, respectively, that occur when the input is changed from a high level to a low level.

6.5.2 Switching Characteristics

 V_{CC} = 5 V, T_A = 25°C

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
t _{d(OD)}	Differential output delay time	R ₁ = 54 Ω,	See Figure 7-3	7	12	18	ns
t _{t(OD)}	Differential output transition time	$R_L = 54 \Omega$	See Figure 7-5	5	10	20	ns
t _{PZH}	Output enable time to high level	R _L = 110 Ω,	See Figure 7-4			35	ns
t _{PZL}	Output enable time to low level	R _L = 110 Ω,	See Figure 7-5			35	ns
t _{PHZ}	Output disable time from high level	$R_L = 110 \Omega$,	See Figure 7-4			50	ns
t _{PLZ}	Output disable time from low level	R _L = 110 Ω,	See Figure 7-5			35	ns

6.5.3 Switching Characteristics: SN55LBC180

 $V_{CC} = 5 \text{ V}, T_A = 25^{\circ}\text{C}$

PARAMETER		TEST CONDITIONS	MIN TYP MAX	UNIT
t _{d(OD)}	Differential output delay time	$R_1 = 54 \Omega$, See Figure 7-3	15	ns
t _{t(OD)}	Differential output transition time	7KL - 54 12, See Figure 7-5	21	ns
t _{PZH}	Output enable time to high level	$R_{\rm I}$ = 110 Ω , See Figure 7-4	32	no
t _{PHZ}	Output disable time from high level	- R _L = 110 Ω, See Figure 7-4	55	ns
t _{PZL}	Output enable time to low level	$R_{\rm L}$ = 110 Ω , See Figure 7-5	32	no
t _{PLZ}	Output disable time from low level	RL = 110 Ω, See Figure 7-5	20	ns

6.6 Receiver Section

6.6.1 Electrical Characteristics

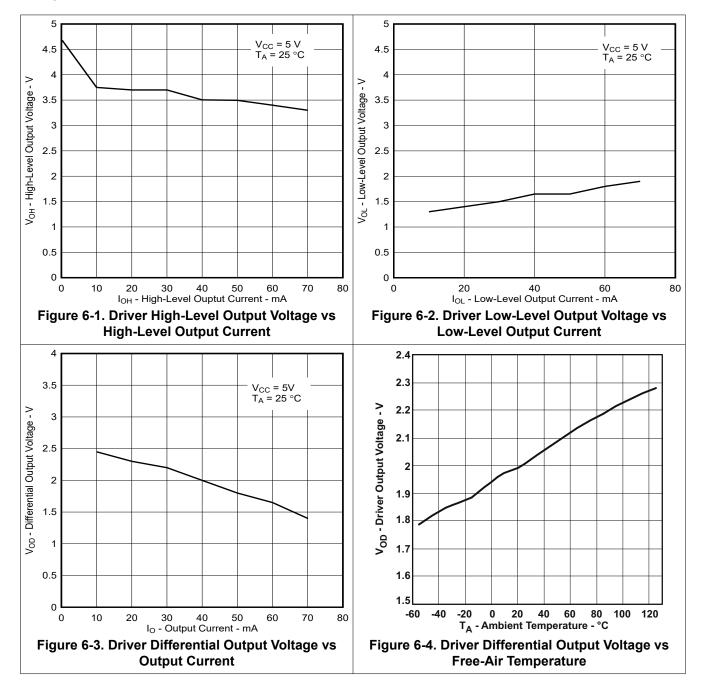
over recommended operating conditions (unless otherwise noted)

PARAMETER		TEST CC	NDITIONS	MIN	TYP	MAX	UNIT
V _{IT+}	Positive-going input threshold voltage	I _O = -8 mA				0.2	V
V _{IT} _	Negative-going input threshold voltage	I _O = 8 mA		-0.2			V
V _{hys}	Hysteresis voltage (V _{IT+} – V _{IT} –)				45		mV
V _{IK}	Enable-input clamp voltage	I _I = -18 mA		-1.5			V
V _{OH}	High-level output voltage	V _{ID} = 200 mV,	I _{OH} = –8 mA	3.5	4.5		V
V _{OL}	Low-level output voltage	V _{ID} = -200 mV,	I _{OL} = 8 mA		0.3	0.5	V
I _{OZ}	High-impedance-state output current	$V_O = 0 V \text{ to } V_{CC}$				±20	μA
I _{IH}	High-level enable-input current	V _{IH} = 2.4 V		-50			μA
I _{IL}	Low-level enable-input current	V _{IL} = 0.4 V		-100			μA
		V _I = 12 V, V _{CC} = 5 V,	Other input at 0 V		0.7	1	
	Pug input gurrent	V _I = 12 V, V _{CC} = 0 V,	Other input at 0 V		8.0	1	mA
I ₁	Bus input current	V _I = -7 V, V _{CC} = 5 V,	Other input at 0 V	-0.8	-0.5		IIIA
		V _I = -7 V, V _{CC} = 0 V,	Other input at 0 V	-0.8	-0.5		
	Supply ourrent	Driver disabled	Outputs enabled			5	mA
Icc	Supply current	Driver disabled	Outputs disabled			3	IIIA

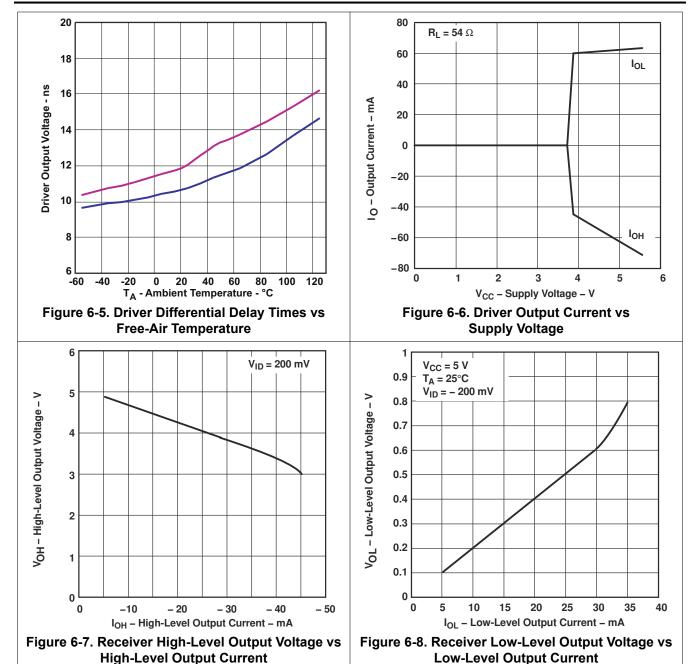
6.6.2 Switching Characteristics

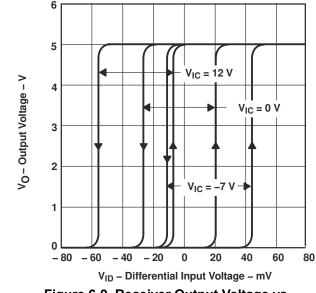
 V_{CC} = 5 V, T_A = 25°C

	PARAMETER	TEST COND	MIN	TYP	MAX	UNIT	
t _{PHL}	Propagation delay time, high- to low-level output			11	22	33	ns
t _{PLH}	Propagation delay time, low- to high-level output	$V_{ID} = -1.5 \text{ V to } 1.5 \text{ V},$	Saa Figura 7.6	11	22	33	ns
t _{sk(p)}	Pulse skew (t _{PHL} – t _{PLH})	$V_{ID} = -1.5 \text{ V to } 1.5 \text{ V}, $ See Figure 7-6			3	6	ns
t _t	Transition time				5	8	ns
t _{PZH}	Output enable time to high level					35	ns
t _{PZL}	Output enable time to low level	Soo Figure 7.7			30	ns	
t _{PHZ}	Output disable time from high level	See Figure 7-7		-		35	ns
t _{PLZ}	Output disable time from low level				30	ns	


6.6.3 Switching Characteristics: SN55LBC180

 $V_{CC} = 5 \text{ V}, T_A = 25^{\circ}\text{C}$


	PARAMETER	TEST CONDI	MIN	TYP	MAX	UNIT	
t _{PHL}	Propagation delay time, high- to low-level output				26		ns
t _{PLH}	Propagation delay time, low- to high-level output	V = 15 V to 15 V	23			ns	
t _{sk(p)}	Pulse skew (t _{PHL} – t _{PLH})	$V_{\rm ID} = -1.5 \text{ V to } 1.5 \text{ V},$ See Figure 7-6		3			ns
t _{sk(p)t}	Transition time				4		ns
t _{PZH}	Output enable time to high level				30		ns
t _{PHZ}	Output disable time from high level	Soo Figure 7.4		26		ns	
t _{PZL}	Output enable time to low level	See Figure 7-4			30		ns
t _{PLZ}	Output disable time from low level			30		ns	



6.7 Typical Characteristics

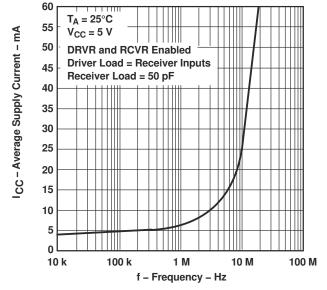
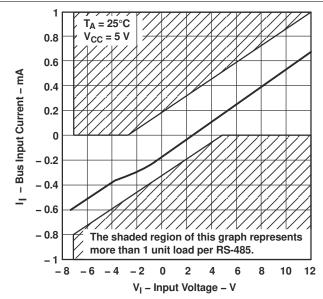



Figure 6-9. Receiver Output Voltage vs Differential Input Voltage

Figure 6-10. Average Supply Current vs Frequency

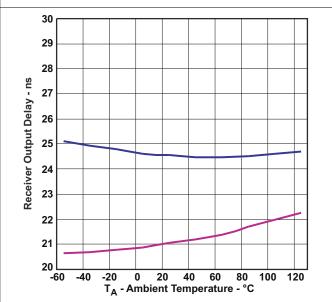


Figure 6-11. Receiver Bus Input Current vs Input Voltage (Complementary Input at 0 V)

Figure 6-12. Receiver Propagation DELAY TI vs Free-Air Temperature

7 Parameter Measurement Information

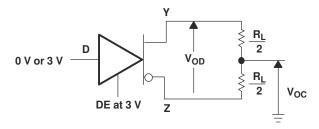


Figure 7-1. Differential and Common-Mode Output Voltages

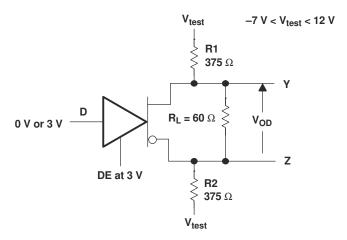
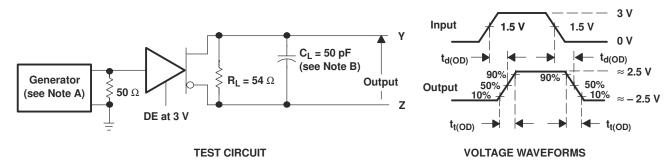



Figure 7-2. Driver V_{OD} Test Circuit

- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR > 1 MHz, 50% duty cycle, $t_r \le 6$ ns, $t_f \le$
 - B. C_L includes probe and jig capacitance.

Figure 7-3. Driver Test Circuit and Differential Output Delay and Transition Time Voltage Waveforms

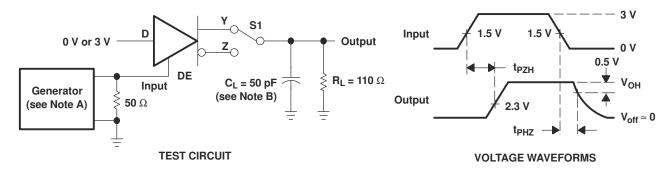


Figure 7-4. Driver Test Circuit and Enable and Disable Time Waveforms

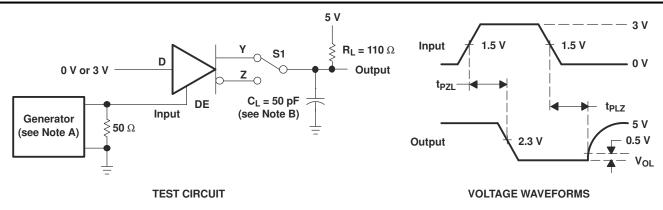
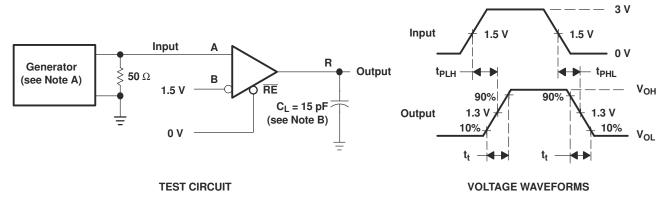
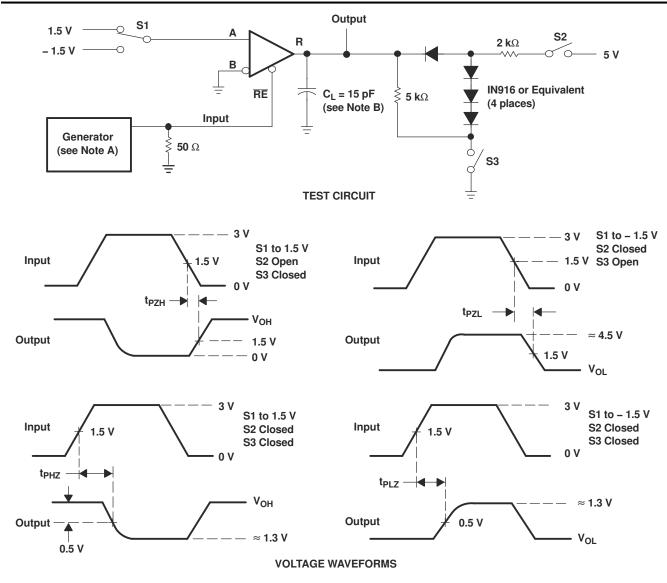



Figure 7-5. Driver Test Circuit and Enable and Disable Time Voltage Waveforms



NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, $t_r \leq$ 6 ns, $t_f \leq$ 6 ns, $t_f \leq$ 6 ns, $t_f \leq$ 6 ns, $t_f \leq$ 1 MHz, 50% duty cycle, $t_f \leq$ 1 mHz, $t_f \leq$ 1

B. C_L includes probe and jig capacitance.

Figure 7-6. Receiver Test Circuit and Propagation Delay Time Voltage Waveforms

NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, $t_r \leq$ 6 ns, $t_f \leq$ 8 ns, $t_f \leq$ 8 ns, $t_f \leq$ 9 ns, t_f

B. C_L includes probe and jig capacitance.

Figure 7-7. Receiver Output Enable and Disable Times

8 Detailed Description

8.1 Function Tables

Table 8-1. DRIVER

INPUT	ENABLE	OUTPUTS				
D ⁽¹⁾	DE	Y	Z			
Н	Н	Н	L			
L	Н	L	Н			
X	L	Z	Z			

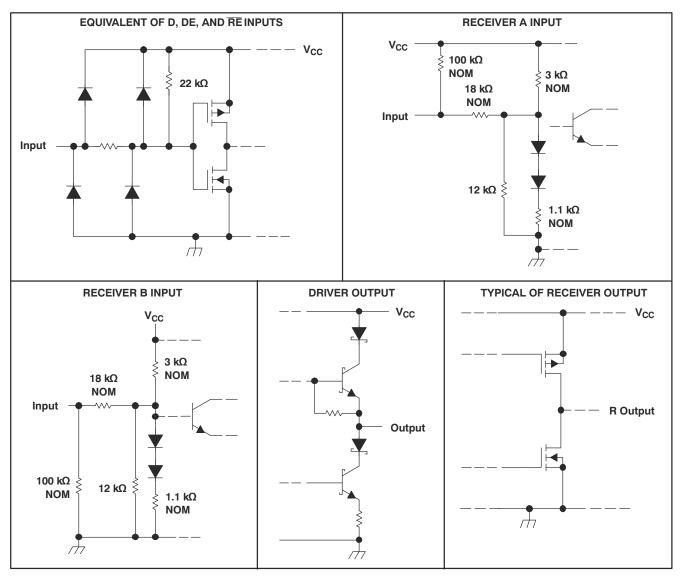

(1) H = high level, L = low level, ? = Indeterminate, X = irrelevant, Z = high impedance (off)

Table 8-2. RECEIVER

DIFFERENTIAL INPUTS A-B	ENABLE RE	OUTPUT R			
A-5	KE.	Υ	Z		
V _{ID} ≥ 0.2 V	L	Н			
-0.2 V < V _{ID} < 0.2 V	L	?			
V _{ID} ≤ -0.2 V	L	L			
X	Н	Z			
Open circuit	L	Н			

8.2 Schematics of Inputs and Outputs

9 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

9.1 Application Information

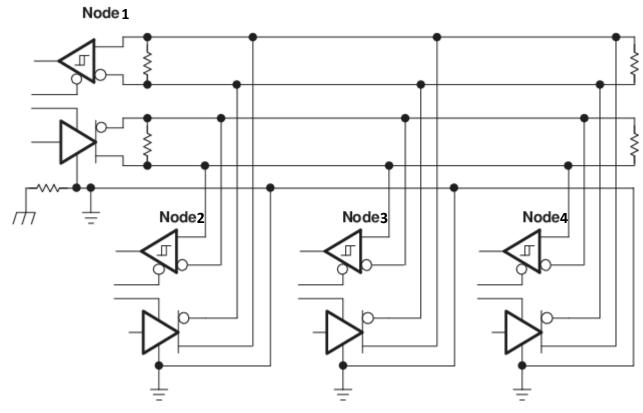


Figure 9-1. Full Duplex Application Circuit

10 Device and Documentation Support

10.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

10.2 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

10.3 Trademarks

LinBiCMOS[™] is a trademark of Texas Instruments.

TI E2E™ is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

10.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

10.5 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

www.ti.com 18-Nov-2023

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SN55LBC180RSAR	ACTIVE	QFN	RSA	16	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-55 to 125	SN55 LBC180	Samples
SN65LBC180DR	ACTIVE	SOIC	D	14	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	6LB180	Samples
SN65LBC180DRG4	ACTIVE	SOIC	D	14	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	6LB180	Samples
SN65LBC180RSAR	ACTIVE	QFN	RSA	16	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	BL180	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

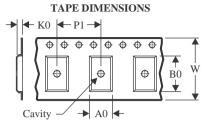
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

PACKAGE OPTION ADDENDUM

www.ti.com 18-Nov-2023

continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 4-Nov-2023

TAPE AND REEL INFORMATION

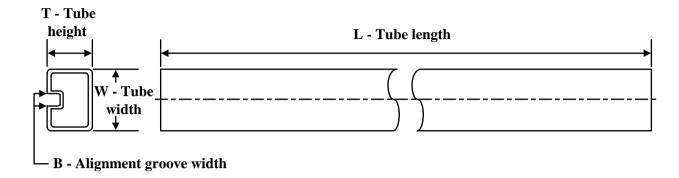
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN55LBC180RSAR	QFN	RSA	16	3000	330.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2
SN65LBC180DR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
SN65LBC180RSAR	QFN	RSA	16	3000	330.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2

www.ti.com 4-Nov-2023

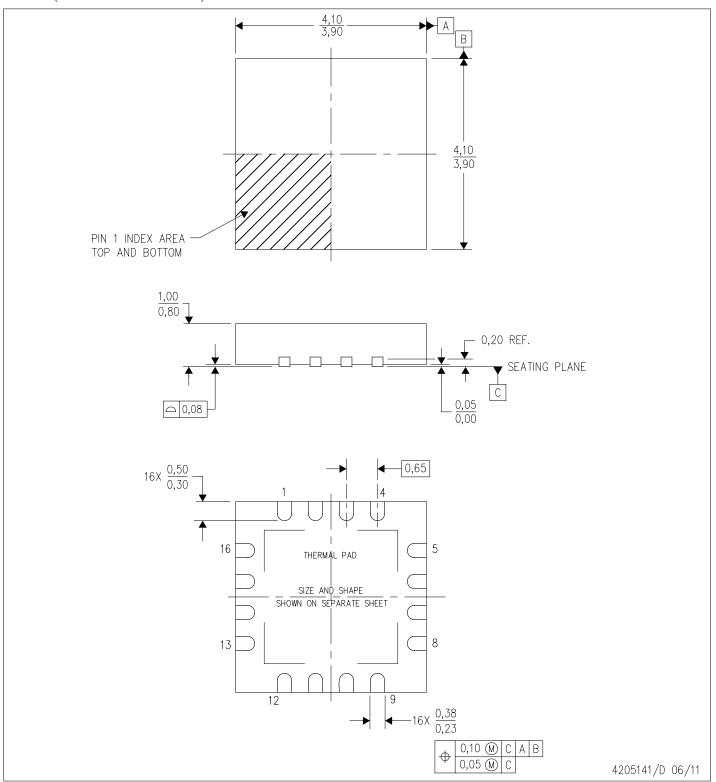

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN55LBC180RSAR	QFN	RSA	16	3000	367.0	367.0	35.0
SN65LBC180DR	SOIC	D	14	2500	356.0	356.0	35.0
SN65LBC180RSAR	QFN	RSA	16	3000	367.0	367.0	35.0

PACKAGE MATERIALS INFORMATION

www.ti.com 4-Nov-2023

TUBE



*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
SN65LBC180N	N	PDIP	14	25	506	13.97	11230	4.32
SN75LBC180N	N	PDIP	14	25	506	13.97	11230	4.32

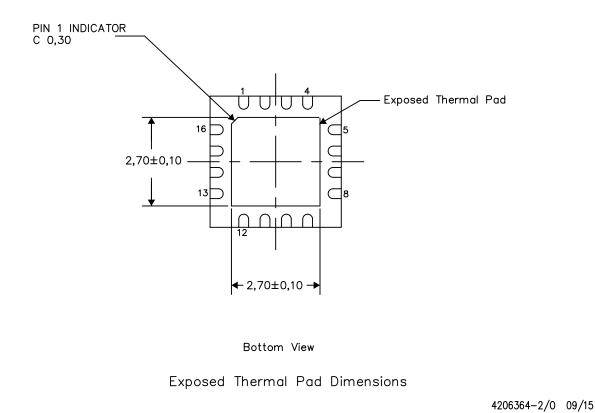
RSA (S-PVQFN-N16)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.

- B. This drawing is subject to change without notice.
- C. Quad Flatpack, No—leads (QFN) package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- F. Falls within JEDEC MO-220.

RSA (S-PVQFN-N16)

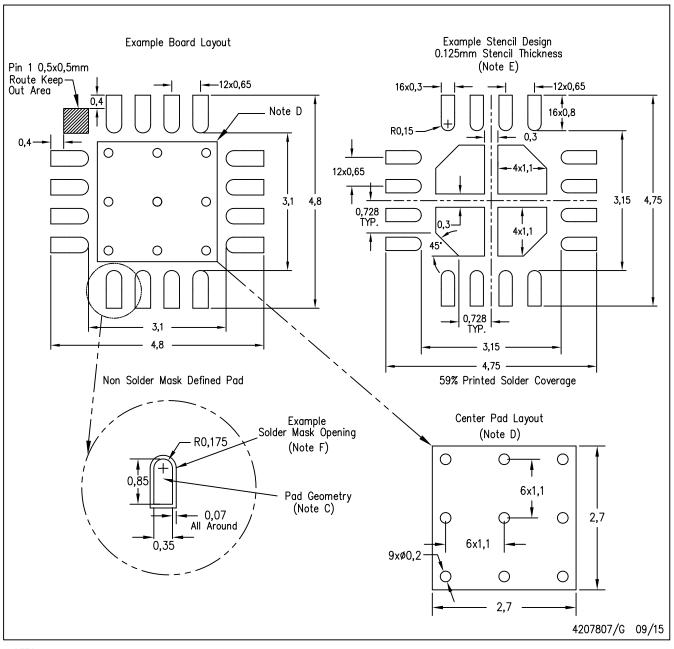

PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

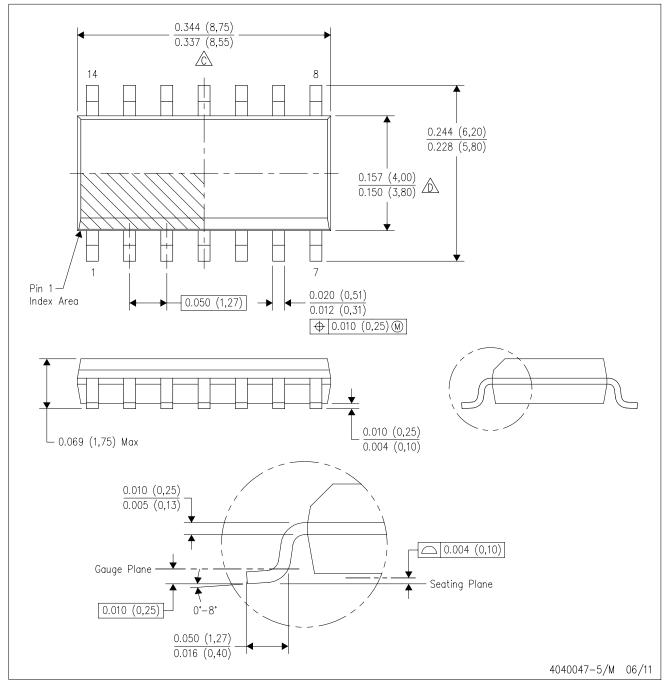
The exposed thermal pad dimensions for this package are shown in the following illustration.


NOTES:

A. All linear dimensions are in millimeters

RSA (S-PVQFN-N16)

PLASTIC QUAD FLATPACK NO-LEAD


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, QFN Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for solder mask tolerances.

D (R-PDSO-G14)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AB.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated