10.3Gbps Thunderbolt ${ }^{\text {TM }}$ Port and DisplayPort ${ }^{\text {TM }}$ Switch

FEATURES

- Compatible with Thunderbolt ${ }^{\text {TM }}$ Technology Electrical Standards and DisplayPort ${ }^{\mathrm{TM}} 1.2 \mathrm{a}$
- Wide -3dB Differential Bandwidth of Over 10GHz on 10G Path
- Supports DP and DP++ Configurations
- Handles HPD (5V tolerant) and Cable Detect
- Supports AUX and DDC MUX
- Excellent Dynamic Characteristics (on 10G path, typical values at 5 GHz):
- Crosstalk $=-35 \mathrm{~dB}$
- Off-Isolation = $\mathbf{- 2 4 d B}$
- Insertion Loss $=\mathbf{- 1 . 5 d B}$
- Return Loss $=-20 \mathrm{~dB}$
- Intra-pair Skew Added < 4ps
- Single 3.3V Power Supply
- Small 3x3mm 24-Pin QFN Package
- Low Power Consumption
- 3.3mW Typical Active Power
- $80 \mu \mathrm{~W}$ Typical Detect Mode

DESCRIPTION

The HD3SS0001 is a high-speed passive-switch device with integrated buffers and resistors, designed to support Thunderbolt ${ }^{\text {TM }}$ technology, DisplayPort, and Dual Mode DisplayPort. The 10G path supports a high 10 GHz bandwidth and excellent loss characteristics, while the DisplayPort path supports 5.4Gbps.

The integrated 3 -pairs to 1-pair multiplexer (3:1 MUX) switches between DDC, AUX, and 10.3Gbps signals. The integrated 2-pairs to 1-pair multiplexer (2:1 MUX) switches between the Thunderbolt ${ }^{\text {TMM }}$ technology Low Speed UART transmit/receive pair and DisplayPort Main Link 1.

The MUXs are controlled by 4 input pins: TRI\#, DP_EN\#, 10G_EN, and CAD_IN (cable detect from the connector). The HD3SS0001 is packaged in a small $3 \times 3 \mathrm{~mm} 24$-pin QFN, operates from a single 3.3 V supply, and supports an ambient temperature range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTIONAL DIAGRAM

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

TYPICAL APPLICATION

TRUTH TABLE

MODE	LOGICAL INPUT TO SET ${ }^{(1)}$				EFFECT		
	TRI\#	DP_EN\#	10G_EN	CAD_IN	$\begin{gathered} \text { 2:1 MUX } \\ \text { SELECTION } \end{gathered}$	$\begin{gathered} \text { 3:1 MUX } \\ \text { SELECTION } \end{gathered}$	PULL-UP RESISTOR on 10G(n)
Thunderbolt ${ }^{\text {TM }}$ Protocol	1	1	1	X	LS	10G	Disconnected
	0	1	1	X	LS	Tri-stated	Disconnected
DisplayPort	1	0	0	0	ML	AUX	Connected
	0	0	0	0	Tri-Stated	Tri-stated	Connected
TMDS	1	0	0	1	ML	DDC	Connected
	0	0	0	1	Tri-Stated	Tri-stated	Connected
Detect Mode	X	1	0	X	LS	Tri-Stated	Connected
[Invalid]	X	0	1	X	Tri-Stated	Tri-Stated	Disconnected

(1) " X " = Don't Care.
(2) MUX Selection names are abbreviated.

(1) NOTE: The HD3SS0001 can tolerate polarity inversions for the differential signals denoted by the (p) and (n) terminology, to ease potential board routing issues. LSTX/LSRX cannot be swapped, since LSRX is buffered and therefore unidirectional. Also, note that the integrated pullup on $10 \mathrm{G}(\mathrm{n})$ and the integrated pulldown on $10 \mathrm{G}(\mathrm{p})$ cannot be swapped.

PIN FUNCTIONS

PIN		I/O	SYSTEM SIDE	DESCRIPTION
NO.	NAME			
11	ML1 ${ }^{\text {p }}$ _IN	I	Controller	DisplayPort MainLink1 (p) input
10	ML1 (n) IN			DisplayPort MainLink1(n) input
24	TRI\#			Tri-State control (see TRUTH TABLE)
6	DP_EN\#			DisplayPort Enable, active-low (see TRUTH TABLE)
15	10G_EN			10.3Gbps Mode Enable (see TRUTH TABLE)
18	CAD_IN		Connector	Cable Detect
17	HPD_IN			Hot Plug Detect
2	AUX(p)	I/O	Controller	AUX Positive Signal
1	AUX(n)			AUX Negative Signal
5	DDC_SCL			DDC Clock
4	DDC_SDA			DDC Data
14	LSTX			UART TX Signal
13	LSRX			UART RX Signal
22	10G(p)		Connector	10G_RX1 (p) or AUX(p) or DDC_SCL, with pull-down
23	10G(n)			10G_RX1(n) or AUX(n) or DDC_SDA, with pull-up
19	ML1(p)_OUT			DisplayPort MainLink1 (p) output or LSTX
20	ML1 (n) _OUT			DisplayPort MainLink1(n) output or LSRX
8	10G_RX1(p)	0	Controller	10.3Gbps Positive Signal
7	10G_RX1(n)			10.3Gbps Negative Signal
16	CAD_OUT			Cable Detect
12	HPD_OUT			Hot Plug Detect
3	$V_{\text {DD }}$	Power Supply		Power supply
$9,21$ Center Pad	GND			Reference ground

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Over operating free-air temperature range (unless otherwise noted)

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltage values, except differential voltages, are with respect to network ground terminal.
(3) Tested in accordance with JEDEC/ESDA JS-001-2011
(4) Tested in accordance with JEDEC JESD22 C101-E

THERMAL INFORMATION

over operating free-air temperature range (unless otherwise noted)

	THERMAL METRIC ${ }^{(1)}$	HD3SS0001	UNITS
		24-PIN VQFN (RLL)	
$\theta_{\text {JA }}$	Junction-to-ambient thermal resistance	41.5	
$\theta_{\text {JCtop }}$	Junction-to-case (top) thermal resistance	43.1	
$\theta_{\text {JCbot }}$	Junction-to-case (bottom) thermal resistance	6.3	
$\theta_{\text {JB }}$	Junction-to-board thermal resistance	11.2	
$\Psi_{\text {JT }}$	Junction-to-top characterization parameter	1.2	
$\Psi_{\text {JB }}$	Junction-to-board characterization parameter	${ }^{\circ} \mathrm{C} / \mathrm{W}$	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

POWER CHARACTERISTICS

over operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS	MIN	TYP
MAX ${ }^{(1)}$	UNIT				
$I_{D D}$	Supply Current in Active Mode	Outputs Floating	1.0	1.3	mA
$\mathrm{I}_{\mathrm{DETECT}}$	Supply Current in Detect Mode	DP_EN\# $=1,10 G _E N=0$	26	50	$\mu \mathrm{~A}$
P_{D}	Power Dissipation in Active Mode		3.3	4.7	mW
$\mathrm{P}_{\text {Detect }}$	Power Dissipation in Detect Mode		80	150	$\mu \mathrm{~W}$

(1) The maximum ratings are simulated for $\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$.

Texas
InsTRUMENTS

RECOMMENDED OPERATING CONDITIONS

Typical values for all parameters are at $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Temperature limits are specified by design)

	PARAMETER	NOTES/CONDITIONS	MIN	TYP	MAX	UNIT
V_{DD}	Supply voltage		3.0	3.3	$3.6{ }^{(1)}$	V
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		-40		85	${ }^{\circ} \mathrm{C}$
V_{IH}	Input high voltage	CAD_IN, HPD_IN ${ }^{(2)}$, TRI\#, DP_EN\#, and 10G_EN	2.0		$V_{D D}$	V
		ML1 (n)_OUT (when 2:1 MUX selects LS)	2.0		$V_{D D}$	
VIL	Input low voltage	CAD_IN, HPD_IN ${ }^{(2)}$, TRI\#, DP_EN\#, and 10G_EN	-0.1		0.8	V
		ML1 (n)_OUT (when 2:1 MUX selects LS)	-0.1		0.8	
$\mathrm{V}_{\text {OH }}$	Output high voltage	CAD_OUT, HPD_OUT	2.7		V_{DD}	V
		LSRX (when 2:1 MUX selects LS)	2.7		$V_{D D}{ }^{(1)}$	
$\mathrm{V}_{\text {OL }}$	Output low voltage	CAD_OUT, HPD_OUT	0.0		0.1	V
		LSRX (when 2:1 MUX selects LS)	0.0		0.1	
$\mathrm{IIH}^{\text {H}}$	High-level input current	TRI\#, DP_EN\#, 10G_EN, CAD_IN, and HPD_IN; $V_{D D}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$			5	$\mu \mathrm{A}$
		ML1 (n) $O U T ; \mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$ (when 2:1 MUX selects LS)			3.75	
	Low-level input current	TRI\#, DP_EN\#, 10G_EN, CAD_IN, and HPD_IN; $\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{GND}$			100	nA
		ML1 (n)_OUT; $\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{GND}$ (when 2:1 MUX selects LS)			100	
$\mathrm{V}_{1 / \mathrm{O} \text { _Diff }}$	Differential I/O voltage	AUX(p)/AUX(n), 10G_RX1(p)/ 10G_RX1(n), ML1 (p)_IN/ML1(n)_IN, 10G(p)/10G(n), and ML1(p)_OUT/ML1(n)_OUT when MUX's are connected to Differential Signals.	0		1.8	Vpp
$\mathrm{V}_{1 / \mathrm{O} \text { _CM }}$	Common mode I/O voltage	AUX(p)/AUX(n), 10G_RX1(p)/10G_RX1(n), ML1 (p)_IN/ML1(n)_IN, 10G(p)/ 10G(n), and ML1(p)_OUT/ML1(n)_OUT when MUX's are connected to Differential Signals.	0		2.0	V

(1) $V_{D D}$ range supports 3.0 V to 3.6 V , but for Thunderbolt products it is anticipated that the V_{DD} must be maintained at less than or equal to 3.4 V to ensure that the V_{OH} on the LSRx do not exceed 3.4 V .
(2) HPD_IN is 5 V tolerant.

ELECTRICAL CHARACTERISTICS

(under recommended operation conditions)

(1) These values apply for CAD_IN tri-stated, unless otherwise noted.

ELECTRICAL CHARACTERISTICS (continued)

(under recommended operation conditions)

Thunderbolt ${ }^{\text {TM }}$ Technology Low Speed UART : LSTX

$\mathrm{C}_{\text {ON }}$	Outputs ON capacitance	$\mathrm{V}_{1}=0 \mathrm{~V}$, Outputs Open, Switch ON	8	pF
CofF	Outputs OFF capacitance	$\mathrm{V}_{1}=0 \mathrm{~V}$, Outputs Open, Switch OFF	3	pF
$\mathrm{R}_{\text {ON }}$	Output ON resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \text { to } 3 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-1 \mathrm{~mA} \\ & \mathrm{CAD} _\mathrm{IN}=0 \mathrm{~V} \end{aligned}$	$12 \quad 19$	Ω
$\mathrm{t}_{\text {PD }}$	Propagation Delay	LSTX to ML1 (p)_OUT	200	ps
DisplayPort: AUX(p), AUX(n)				
$\mathrm{Con}^{\text {a }}$	Outputs ON Capacitance	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$; Outputs Open; Switch ON	6	pF
CofF	Outputs OFF Capacitance	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$; Outputs Open; Switch OFF	3	pF
$\mathrm{R}_{\text {ON }}$	Output ON resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=-10 \mathrm{~mA} ; \operatorname{AUX}(\mathrm{p})=0.3 \mathrm{~V} ; \\ & \mathrm{AUX}(\mathrm{n})=3.0 \mathrm{~V} ; \mathrm{CAD}_{2} \mathrm{IN}=0 \mathrm{~V} \end{aligned}$	12	Ω
$\Delta \mathrm{R}_{\text {ON }}$	On resistance match between pairs of the same channel	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=-10 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{CM}}=0.5 \mathrm{~V} \text { to } 1.5 \mathrm{~V} \end{aligned}$	1	Ω
ToN	Control line change to Mux output switched	See Figure 2	40	ms
TofF			10	$\mu \mathrm{s}$

Thunderbolt Technology Low Speed UART : LSRX

$\mathrm{Con}^{\text {a }}$	Outputs capacitance		3	pF
Z_{0}	Output impedance	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$	60	Ω
$\mathrm{t}_{\text {PD }}$	Propagation delay	ML1 n)_OUT to LSRX	3.2	ns
t_{r}	Rise Time	$V_{D D}=3 \mathrm{~V}$	3	ns
t_{f}	Fall Time	$V_{D D}=3 \mathrm{~V}$	3	ns
Ton	Control line change to MUX Output Switched	See Figure 1	400	$\mu \mathrm{s}$
Toff			10	$\mu \mathrm{s}$

ELECTRICAL CHARACTERISTICS (continued)

(under recommended operation conditions)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
DisplayPort : DDC_SCL, DDC_SDA						
Con	Outputs ON capacitance	$\mathrm{V}_{1}=0 \mathrm{~V}$, Outputs Open, Switch ON		9		pF
CofF	Outputs OFF capacitance	$\mathrm{V}_{1}=0 \mathrm{~V}$, Outputs Open, Switch OFF		3		pF
R_{ON}	Output ON resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CM}}=0.4 \mathrm{~V}, \\ & \mathrm{CAD} \mathrm{IN}=3.3 \mathrm{~V} \end{aligned}$		80	150	Ω
Ton	Control line change to MUX output switched	See Figure 1			400	$\mu \mathrm{s}$
TofF					10	
UART and 10G MUX Outputs : LSTX/LSRX/10G(p)/10G(n)						
R1	Integrated Pullup Resistance	10G(n) pin when in DP, TMDS, or Detect Mode		87	105	k Ω
R2	Integrated Pulldown Resistance	$10 G(p)$ pin when in DP, TMDS, or Detect Mode, or $\mathrm{VDD}=0 \mathrm{~V}$		87	105	k Ω
R PU	Integrated pullup resistance	LSTX		8.7		k Ω
$\mathrm{R}_{\text {PD }}$	Integrated pulldown resistance	LSRX		1.2		$\mathrm{M} \Omega$

TEST DIAGRAMS

Figure 1. Control Line Change to Switched Signals

Figure 2. Propagation Delay and Skew

Figure 3. Off-Isolation Measurement Setup

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
HD3SS0001RLLR	ACTIVE	VQFN	RLL	24	3000	RoHS \& Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	3S5001	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: Tl defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	$\begin{gathered} \mathrm{AO} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { B0 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { K0 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { P1 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { W } \\ (\mathrm{mm}) \end{gathered}$	Pin1 Quadrant
HD3SS0001RLLR	VQFN	RLL	24	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
HD3SS0001RLLR	VQFN	RLL	24	3000	346.0	346.0	33.0

RLL (S-PVQFN-N24)

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.
C. Quad Flatpack, No-leads (QFN) package configuration.
D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.

TEXAS
INSTRUMENTS

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

SOLDER MASK DETAILS

NOTES: (continued)
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

SOLDER PASTE EXAMPLE BASED ON 0.1 mm THICK STENCIL

EXPOSED PAD
81\% PRINTED COVERAGE BY AREA
SCALE: 20X

NOTES: (continued)
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations..

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other Tl intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.
TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated

