
SGLS248A - JUNE 2004 - REVISED AUGUST 2004

- Controlled Baseline
 - One Assembly/Test Site, One Fabrication Site
- Extended Temperature Performance of -55°C to 125°C
- Enhanced Diminishing Manufacturing Sources (DMS) Support
- Enhanced Product-Change Notification
- Qualification Pedigree[†]
- Low Output Skew, Low Pulse Skew for Clock-Distribution and Clock-Generation Applications
- Operates at 3.3-V V_{CC}
- LVTTL-Compatible Inputs and Outputs
- Supports Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V V_{CC})
- Distributes One Clock Input to 10 Outputs
- † Component qualification in accordance with JEDEC and industry standards to ensure reliable operation over an extended temperature range. This includes, but is not limited to, Highly Accelerated Stress Test (HAST) or biased 85/85, temperature cycle, autoclave or unbiased HAST, electromigration, bond intermetallic life, and mold compound life. Such qualification testing should not be viewed as justifying use of this component beyond specified performance and environmental limits.

- Outputs Have Internal Series Damping Resistor to Reduce Transmission Line Effects
- Distributed V_{CC} and Ground Pins Reduce Switching Noise
- State-of-the-Art EPIC-IIB™ BiCMOS Design Significantly Reduces Power Dissipation
- Shrink Small-Outline (DB) Package

description

The CDC2351 is a high-performance clock-driver circuit that distributes one input (A) to 10 outputs (Y) with minimum skew for clock distribution. The output-enable (\overline{OE}) input disables the outputs to a high-impedance state. Each output has an internal series damping resistor to improve signal integrity at the load. The CDC2351 operates at nominal 3.3-V V_{CC} .

The propagation delays are adjusted at the factory using the P0 and P1 pins. The factory adjustments ensure that the part-to-part skew is minimized and is kept within a specified window. Pins P0 and P1 are not intended for customer use and should be connected to GND.

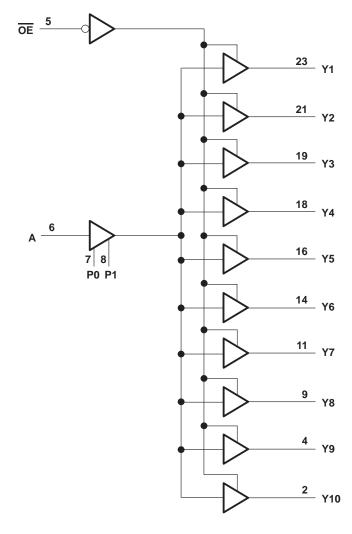
The CDC2351M is characterized for operation over the full military temperature range of -55°C to 125°C.

ORDERING INFORMATION

TA	PACK	AGET	ORDERABLE PART NUMBER	TOP-SIDE MARKING
–55°C to 125°C	SSOP – DB	Tape and Reel	CDC2351MDBREP	CK2351MEP

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


EPIC-IIB is a trademark of Texas Instruments.

FUNCTION TABLE

INP	UTS	OUTPUTS
Α	OE	In
L	Н	Z
Н	Н	Z
L	L	L
Н	L	Н

logic diagram (positive logic)

SGLS248A - JUNE 2004 - REVISED AUGUST 2004

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	0.5 V to 4.6 V
Input voltage range, V _I (see Note 1)	0.5 V to 7 V
Voltage range applied to any output in the high state or power-off state,	
V _O (see Note 1)	0.5 V to 3.6 V
Current into any output in the low state, I _O	24 mA
Input clamp current, I _{IK} (V _I < 0)	–18 mA
Output clamp current, I _{OK} (V _I < 0)	–50 mA
Maximum power dissipation at T _A = 55°C (in still air) (see Note 2): DB package	0.65 W
Storage temperature range, T _{stg}	65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions (see Note 3)

			MIN	MAX	UNIT	
Vcc	Supply voltage		3	3.6	V	
VIH	High-level input voltage	High-level input voltage				
V_{IL}	Low-level input voltage	Low-level input voltage				
VI	Input voltage				V	
ЮН	High-level output current			-12	mA	
loL	Low-level output current			12	mA	
fclock	Input clock frequency			100	MHz	
TA	Operating free-air temperature	CDC2351M	-55	125	°C	

NOTE 3: Unused pins (input or I/O) must be held high or low.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		MIN	TYP	MAX	UNIT		
VIK	V _{CC} = 3 V,	I _I = -18 mA				-1.2	V
Voн	V _{CC} = 3 V,	I _{OH} = – 12 mA		2			V
V _{OL}	V _{CC} = 3 V,	I _{OL} = 12 mA				0.8	V
lį	V _{CC} = 3.6 V,	$V_I = V_{CC}$ or GND	V _I = V _{CC} or GND				
1 ₀ ‡	V _{CC} = 3.6 V,	V _O = 2.5 V	-7		-70	mA	
loz	V _{CC} = 3.6 V,	VCC = 3 V or 0				±10	μΑ
			Outputs high			0.3	
ICC	V _{CC} = 3.6 V,	$I_O = 0$, $V_I = V_{CC}$ or GND	Outputs low			15	mA
			Outputs disabled			0.3	
C _i	$V_I = V_{CC}$ or GND,	V _{CC} = 3.3 V,	f = 10 MHz		4	·	pF
Co	$V_O = V_{CC}$ or GND,	V _{CC} = 3.3 V,	f = 10 MHz		6		рF

[‡] Not more than one output should be tested at a time and the duration of the test should not exceed one second.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

^{2.} The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils. For more information, see the *Package Thermal Considerations* application note in the 1994 *ABT Advanced BiCMOS Technology Data Book*, literature number SCBD002.

CDC2351-EP 1-LINE TO 10-LINE CLOCK DRIVER WITH 3-STATE OUTPUTS

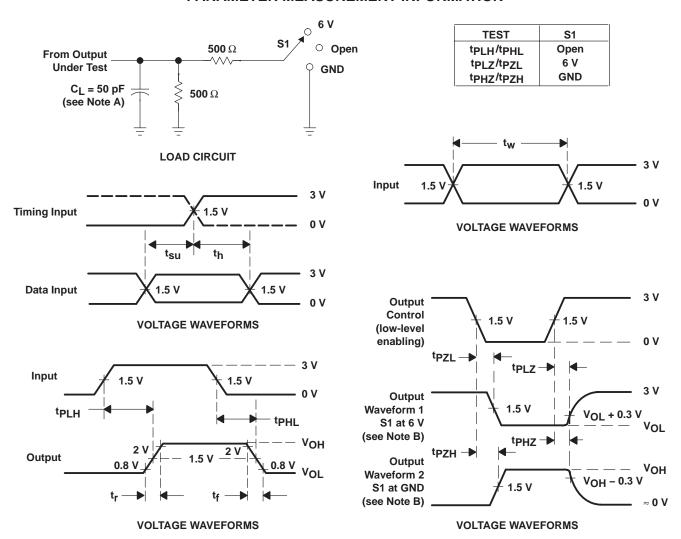
SGLS248A - JUNE 2004 - REVISED AUGUST 2004

switching characteristics, C_L = 50 pF (see Figure 1 and Figure 2)

PARAMETER	FROM	TO	V _C	C = 3.3	V,	V _{CC} = 3 V T _A = -55°C	/ to 3.6 V, C to 125°C	UNIT
	(INPUT)	(OUTPUT)	MIN	TYP	MAX	MIN	MAX	
^t PLH		Υ	3.8	4.3	4.8	1.1	11	
t _{PHL}	А	Y	3.6	4.1	4.6	1	9.7	ns
^t PZH	ŌĒ	V	2.4	4.9	6	1	12	
^t PZL	OE	Υ	2.4	4.3	6	1	11.1	ns
^t PHZ	ŌĒ	V	2.2	4.4	6.3	1	11.1	
t _{PLZ}	OE	Υ	2.2	4.6	6.3	1	11.5	ns
t _{sk(o)}	А	Υ		0.3	0.5		2.5	ns
^t sk(p)	А	Υ		0.2	0.8		3	ns
t _{sk(pr)}	А	Υ			1			ns
t _r	А	Y					2.5	ns
t _f	А	Υ					2.5	ns

switching characteristics temperature and V_{CC} coefficients over recommended operating free-air temperature and V_{CC} range (see Note 4)

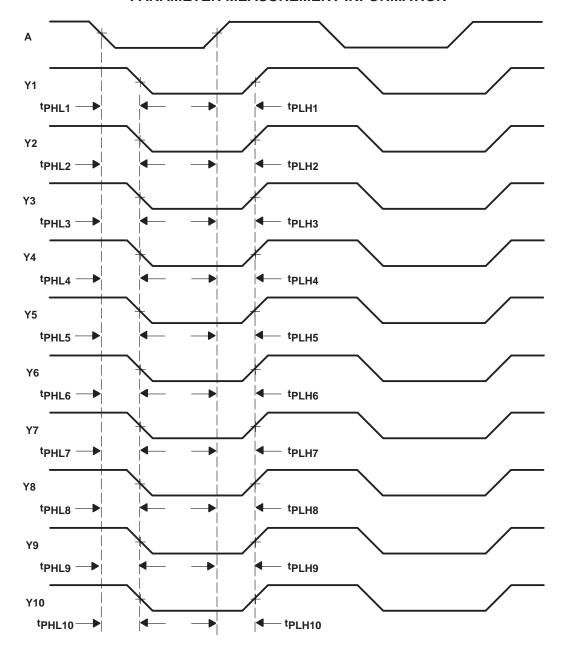
	PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN MAX	UNIT
∞tpLH(T)	Average temperature coefficient of low-to-high propagation delay	Α	Υ	₈₅ †	ps/10°C
∞tpHL(T)	Average temperature coefficient of high-to-low propagation delay	Α	Υ	₅₀ †	ps/10°C
∝tPLH(VCC)	Average V _{CC} coefficient of low-to-high propagation delay	Α	Υ	-145 [‡]	ps/ 100 mV
∝t _{PHL} (V _{CC})	Average V _{CC} coefficient of high-to-low propagation delay	Α	Υ	-100‡	ps/ 100 mV


^{† ∝}tpLH(T) and ∝tpHL(T) are virtually independent of VCC.

NOTE 4: This data was extracted from characterization material and has not been tested at the factory.

 $[\]ddagger \propto t_{PLH}(V_{CC})$ and $\propto t_{PHL}(V_{CC})$ are virtually independent of temperature.

PARAMETER MEASUREMENT INFORMATION



NOTES: A. C_I includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_{O} = 50 Ω , $t_{f} \leq$ 2.5 ns, $t_{f} \leq$ 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION

- NOTES: A. Output skew, t_{sk(o)}, is calculated as the greater of:

 The difference between the fastest and slowest of t_{PLHn} (n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
 - The difference between the fastest and slowest of tpHLn (n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
 - B. Pulse skew, $t_{sk(p)}$, is calculated as the greater of $|t_{PLHn} t_{PHLn}|$ (n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10).

 - C. Process skew, t_{Sk(pr)}, is calculated as the greater of:

 The difference between the fastest and slowest of t_{PLHn} (n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10) across multiple devices under identical
 - The difference between the fastest and slowest of tpHLn (n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10) across multiple devices under identical operating conditions.

Figure 2. Waveforms for Calculation of $t_{sk(0)}$, $t_{sk(p)}$, $t_{sk(pr)}$

PACKAGE OPTION ADDENDUM

10-Dec-2020

PACKAGING INFORMATION

www.ti.com

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
CDC2351MDBREP	ACTIVE	SSOP	DB	24	2000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-55 to 125	CK2351MEP	Samples
V62/04757-01XE	ACTIVE	SSOP	DB	24	2000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-55 to 125	CK2351MEP	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

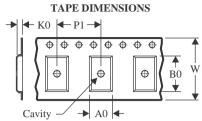
PACKAGE OPTION ADDENDUM

10-Dec-2020

OTHER QUALIFIED VERSIONS OF CDC2351-EP:

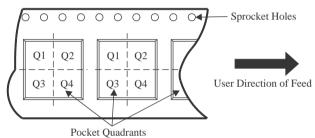
• Automotive: CDC2351-Q1

NOTE: Qualified Version Definitions:


- Catalog TI's standard catalog product
- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects

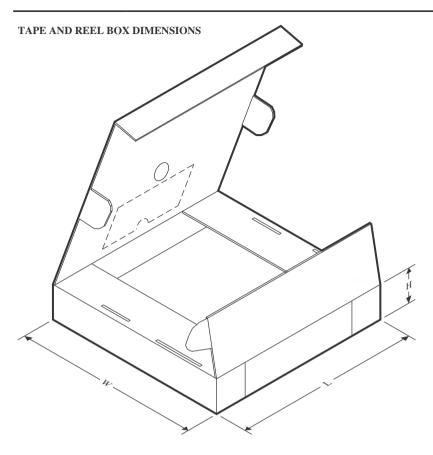
PACKAGE MATERIALS INFORMATION

www.ti.com 3-Jun-2022


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CDC2351MDBREP	SSOP	DB	24	2000	330.0	16.4	8.2	8.8	2.5	12.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 3-Jun-2022

*All dimensions are nominal

	Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
ı	CDC2351MDBREP	SSOP	DB	24	2000	356.0	356.0	35.0	

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated