- Member of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- Pinout Optimizes DDR-II DIMM PCB Layout
- Configurable as 25-Bit 1:1 or 14-Bit 1:2 Registered Buffer
- Chip-Select Inputs Gate the Data Outputs from Changing State and Minimizes System Power Consumption
- Output Edge-Control Circuitry Minimizes Switching Noise in an Unterminated Line
- Supports SSTL_18 Data Inputs
- Differential Clock (CLK and CLK) Inputs
- Supports LVCMOS Switching Levels on the Control and RESET Inputs
- RESET Input Disables Differential Input Receivers, Resets All Registers, and Forces All Outputs Low
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
- 5000-V Human-Body Model (A114-A)
- 200-V Machine Model (A115-A)
- 1000-V Charged-Device Model (C101)

description/ordering information

This 25 -bit 1:1 or 14-bit 1:2 configurable registered buffer is designed for $1.7-\mathrm{V}$ to $1.9-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$ operation. In the 1:1 pinout configuration, only one device per DIMM is required to drive nine SDRAM loads. In the 1:2 pinout configuration, two devices per DIMM are required to drive 18 SDRAM loads.
All inputs are SSTL_18, except the LVCMOS reset ($\overline{\operatorname{RESET}}$) and LVCMOS control (Cn) inputs. All outputs are edge-controlled circuits optimized for unterminated DIMM loads and meet SSTL_18 specifications.
The SN74SSTU32864 operates from a differential clock (CLK and $\overline{\text { CLK }}$). Data are registered at the crossing of CLK going high and CLK going low.
The C0 input controls the pinout configuration of the 1:2 pinout from register-A configuration (when low) to register-B configuration (when high). The C1 input controls the pinout configuration from 25-bit 1:1 (when low) to 14-bit $1: 2$ (when high). C0 and C1 should not be switched during normal operation. They should be hard-wired to a valid low or high level to configure the register in the desired mode. In the 25-bit 1:1 pinout configuration, the A6, D6, and H6 terminals are driven low and should not be used.
The device supports low-power standby operation. When $\overline{\text { RESET }}$ is low, the differential input receivers are disabled, and undriven (floating) data, clock, and reference voltage ($\mathrm{V}_{\mathrm{REF}}$) inputs are allowed. In addition, when $\overline{R E S E T}$ is low, all registers are reset and all outputs are forced low. The LVCMOS RESET and Cn inputs always must be held at a valid logic high or low level.
The two $V_{\text {REF }}$ pins (A3 and T3), are connected together internally by approximately 150Ω. However, it is necessary to connect only one of the two $\mathrm{V}_{\text {REF }}$ pins to the external $\mathrm{V}_{\text {REF }}$ power supply. An unused $\mathrm{V}_{\text {REF }}$ pin should be terminated with a $\mathrm{V}_{\text {REF }}$ coupling capacitor.

ORDERING INFORMATION

T_{A}	PACKAGE \dagger		ORDERABLE PART NUMBER	TOP-SIDE MARKING
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	LFBGA - GKE	Tape and reel	SN74SSTU32864GKER	SU864

†Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

description/ordering information (continued)

The device also supports low-power active operation by monitoring both system chip select ($\overline{\mathrm{DCS}}$ and $\overline{\mathrm{CSR}}$) inputs and will gate the Qn outputs from changing states when both $\overline{\mathrm{DCS}}$ and $\overline{\mathrm{CSR}}$ inputs are high. If either $\overline{\mathrm{DCS}}$ or $\overline{\mathrm{CSR}}$ input is low, the Qn outputs function normally. The $\overline{\operatorname{RESET}}$ input has priority over the $\overline{\mathrm{DCS}}$ and $\overline{\mathrm{CSR}}$ control and forces the output low. If the $\overline{\mathrm{DCS}}$ control functionality is not desired, the $\overline{\mathrm{CSR}}$ input can be hard-wired to ground, in which case, the setup-time requirement for $\overline{\mathrm{DCS}}$ is the same as for the other D data inputs.

To ensure defined outputs from the register before a stable clock has been supplied, $\overline{R E S E T}$ must be held in the low state during power up.

GKE PACKAGE (TOP VIEW)

terminal assignments for $1: 1$ register $(C 0=0, C 1=0)$

Each pin name in parentheses indicates the DDR-II DIMM signal name.
NC - No internal connection
DNU - Do not use
logic diagram for 1:1 register configuration (positive logic)

terminal assignments for 1:2 register $A(C 0=0, C 1=1)$

	1	2	3	4	5	6
A	D1 (DCKE)	NC	$V_{\text {REF }}$	V_{CC}	$\begin{gathered} \text { Q1A } \\ \text { (QCKEA) } \end{gathered}$	$\begin{gathered} \text { Q1B } \\ \text { (QCKEB) } \end{gathered}$
B	D2	DNU	GND	GND	Q2A	Q2B
C	D3	DNU	V_{CC}	V_{CC}	Q3A	Q3B
D	D4 (DODT)	NC	GND	GND	$\begin{gathered} \hline \text { Q4A } \\ \text { (QODTA) } \end{gathered}$	$\begin{gathered} \text { Q4B } \\ \text { (QODTB) } \end{gathered}$
E	D5	DNU	V_{CC}	V_{CC}	Q5A	Q5B
F	D6	DNU	GND	GND	Q6A	Q6B
G	NC	RESET	V_{CC}	$V_{C C}$	C1	C0
H	CLK	D7 ($\overline{\mathrm{DCS}})$	GND	GND	$\frac{\mathrm{Q} 7 \mathrm{~A}}{(\mathrm{QCSA})}$	$\frac{\mathrm{Q7B}}{(\mathrm{QCSB})}$
J	$\overline{\text { CLK }}$	$\overline{\mathrm{CSR}}$	V_{CC}	V_{CC}	NC	NC
K	D8	DNU	GND	GND	Q8A	Q8B
L	D9	DNU	V_{CC}	$V_{C C}$	Q9A	Q9B
M	D10	DNU	GND	GND	Q10A	Q10B
N	D11	DNU	V_{CC}	$V_{C C}$	Q11A	Q11B
P	D12	DNU	GND	GND	Q12A	Q12B
R	D13	DNU	V_{CC}	$V_{C C}$	Q13A	Q13B
T	D14	DNU	$V_{\text {REF }}$	V_{CC}	Q14A	Q14B

Each pin name in parentheses indicates the DDR-II DIMM signal name. NC - No internal connection
DNU - Do not use
logic diagram 1:2 register-A configuration (positive logic)

GKE PACKAGE

 (TOP VIEW)$\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6\end{array}$

terminal assignments for 1:2 register $B(C 0=1, C 1=1)$

	1	2	3	4	5	6
A	D1	NC	$V_{\text {REF }}$	V_{CC}	Q1A	Q1B
B	D2	DNU	GND	GND	Q2A	Q2B
C	D3	DNU	$\mathrm{V}_{\text {CC }}$	$V_{\text {CC }}$	Q3A	Q3B
D	D4	NC	GND	GND	Q4A	Q4B
E	D5	DNU	$\mathrm{V}_{\text {CC }}$	$V_{\text {CC }}$	Q5A	Q5B
F	D6	DNU	GND	GND	Q6A	Q6B
G	NC	RESET	V_{CC}	$V_{C C}$	C1	C0
H	CLK	D7 ($\overline{\mathrm{DCS}})$	GND	GND	$\frac{\text { Q7A }}{(\text { QCSA })}$	$\frac{\text { Q7B }}{(\text { QCSB })}$
J	$\overline{\text { CLK }}$	$\overline{\text { CSR }}$	$\mathrm{V}_{\text {CC }}$	V_{CC}	NC	NC
K	D8	DNU	GND	GND	Q8A	Q8B
L	D9	DNU	V_{CC}	$V_{C C}$	Q9A	Q9B
M	D10	DNU	GND	GND	Q10A	Q10B
N	$\begin{aligned} & \text { D11 } \\ & \text { (DODT) } \end{aligned}$	DNU	V_{CC}	$V_{C C}$	$\begin{aligned} & \text { Q11A } \\ & \text { (QODTA) } \end{aligned}$	$\begin{aligned} & \text { Q11B } \\ & \text { (QODTB) } \end{aligned}$
P	D12	DNU	GND	GND	Q12A	Q12B
R	D13	DNU	V_{CC}	V_{CC}	Q13A	Q13B
T	$\begin{gathered} \text { D14 } \\ \text { (DCKE) } \end{gathered}$	DNU	$V_{\text {REF }}$	V_{CC}	$\begin{gathered} \text { Q14A } \\ \text { (QCKEA) } \end{gathered}$	$\begin{gathered} \text { Q14B } \\ \text { (QCKEB) } \end{gathered}$

Each pin name in parentheses indicates the DDR-II DIMM signal name. NC - No internal connection
DNU - Do not use
logic diagram 1:2 register-B configuration (positive logic)

To 10 Other Channels (D2-D6, D8-D10, D12-D13)

TERMINAL FUNCTIONS

TERMINAL NAME	DESCRIPTION	ELECTRICAL CHARACTERISTICS
GND	Ground	Ground input
V_{CC}	Power-supply voltage	1.8 V nominal
$\mathrm{V}_{\text {REF }}$	Input reference voltage	0.9 V nominal
CLK	Positive master clock input	Differential input
$\overline{\text { CLK }}$	Negative master clock input	Differential input
C0, C1	Configuration control inputs - Register A, Register B, 1:1, 1:2 select	LVCMOS inputs
$\overline{\text { RESET }}$	Asynchronous reset input - resets registers and disables $\mathrm{V}_{\text {REF }}$ data and clock differential-input receivers	LVCMOS input
D1-D25	Data inputs - clocked in on the crossing of the rising edge of CLK and the falling edge of CLK	SSTL_18 inputs
$\overline{\mathrm{CSR}}, \overline{\mathrm{DCS}}$	Chip select inputs - disables D1-D25 \dagger outputs switching when both inputs are high	SSTL_18 inputs
DODT	The outputs of this register bit will not be suspended by the $\overline{\mathrm{DCS}}$ and $\overline{\mathrm{CSR}}$ control.	SSTL_18 input
DCKE	The outputs of this register bit will not be suspended by the $\overline{\mathrm{DCS}}$ and $\overline{\mathrm{CSR}}$ control.	SSTL_18 input
Q1-Q25 \ddagger	Data outputs that are suspended by the $\overline{\mathrm{DCS}}$ and $\overline{\mathrm{CSR}}$ control	1.8 V CMOS outputs
$\overline{\text { QCS }}$	Data output that will not be suspended by the $\overline{\mathrm{DCS}}$ and $\overline{\mathrm{CSR}}$ control	1.8 V CMOS output
QODT	Data output that will not be suspended by the $\overline{\mathrm{DCS}}$ and $\overline{\mathrm{CSR}}$ control	1.8 V CMOS output
QCKE	Data output that will not be suspended by the $\overline{\mathrm{DCS}}$ and $\overline{\mathrm{CSR}}$ control	1.8 V CMOS output
NC	No internal connection	
DNU	Do not use - inputs are in standby-equivalent mode, and outputs are driven low.	

† Data inputs = D2, D3, D5, D6, D8-D25 when C0 $=0$ and C1 $=0$
Data inputs = D2, D3 D5, D6, D8-D14 when C0 $=0$ and C1 $=1$
Data inputs = D1-D6, D8-D10, D12, D13 when $C 0=1$ and $C 1=1$.
\ddagger Data outputs = Q2, Q3, Q5, Q6, Q8-Q25 when C0 $=0$ and C1 $=0$
Data outputs = Q2, Q3 Q5, Q6, Q8-Q14 when C0 $=0$ and C1 = 1
Data outputs = Q1-Q6, Q8-Q10, Q12, Q13 when $\mathrm{C} 0=1$ and C1 $=1$.

FUNCTION TABLES

INPUTS						OUTPUT Qn
$\overline{\text { RESET }}$	$\overline{\text { DCS }}$	$\overline{\text { CSR }}$	CLK	$\overline{\text { CLK }}$	Dn	
H	L	X	\uparrow	\downarrow	L	L
H	L	X	\uparrow	\downarrow	H	H
H	X	L	\uparrow	\downarrow	L	L
H	X	L	\uparrow	\downarrow	H	H
H	H	H	\uparrow	\downarrow	X	Q_{0}
H	X	X	L or H	L or H	X	Q_{0}
L	X or floating	L				

INPUTS				OUTPUTS
RESET	CLK	$\overline{\text { CLK }}$	DCKE, $\overline{\text { DCS, }}$, DODT	QCKE, $\overline{\text { QCS, }}$ QODT
H	\uparrow	\downarrow	H	H
H	\uparrow	\downarrow	L	L
H	L or H	L or H	X	Q_{0}
L	X or floating	X or floating	X or floating	L

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

$$
\begin{aligned}
& \text { Supply voltage range, } \mathrm{V}_{\mathrm{CC}} \\
& -0.5 \mathrm{~V} \text { to } 2.5 \mathrm{~V} \\
& \text { Input voltage range, } \mathrm{V}_{\mathrm{I}} \text { (see Notes } 1 \text { and 2) . } 0.5 \mathrm{~V} \text { to 2.5 } \mathrm{V} \\
& \text { Output voltage range, } \mathrm{V}_{\mathrm{O}} \text { (see Notes } 1 \text { and 2) . }-0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V} \\
& \text { Input clamp current, } \mathrm{I}_{\mathrm{IK}}\left(\mathrm{~V}_{\mathrm{I}}<0 \text { or } \mathrm{V}_{\mathrm{I}}>\mathrm{V}_{\mathrm{CC}} \text {) . } \pm 50 \mathrm{~mA}\right. \\
& \text { Output clamp current, } \mathrm{I}_{\mathrm{OK}}\left(\mathrm{~V}_{\mathrm{O}}<0 \text { or } \mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}} \text {) . } \pm 50 \mathrm{~mA}\right. \\
& \text { Continuous output current, } \mathrm{I}_{\mathrm{O}}\left(\mathrm{~V}_{\mathrm{O}}=0 \text { to } \mathrm{V}_{\mathrm{CC}} \text {) . } \pm 50 \mathrm{~mA}\right. \\
& \text { Continuous current through each } \mathrm{V}_{\text {CC }} \text { or GND . } \pm 100 \mathrm{~mA} \\
& \text { Package thermal impedance, } \theta_{\text {JA }} \text { (see Note 3) . 36 } 3{ }^{\circ} \mathrm{C} / \mathrm{W} \\
& \text { Storage temperature range, } \mathrm{T}_{\text {stg }} \text {. }-65^{\circ} \mathrm{C} \text { to } 150^{\circ} \mathrm{C} \\
& \dagger \text { Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and } \\
& \text { functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not } \\
& \text { implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. } \\
& \text { NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed. } \\
& \text { 2. This value is limited to } 2.5 \mathrm{~V} \text { maximum. } \\
& \text { 3. The package thermal impedance is calculated in accordance with JESD 51-7. }
\end{aligned}
$$

WITH SSTL_18 INPUTS AND OUTPUTS

SCES434-MARCH 2003
recommended operating conditions (see Note 4)

			MIN	NOM	MAX	UNIT
$\mathrm{V}_{\text {CC }}$	Supply voltage		1.7		1.9	V
$\mathrm{V}_{\text {REF }}$	Reference voltage		$0.49 \times \mathrm{V}_{\mathrm{CC}}$	$0.5 \times \mathrm{V}_{\text {CC }}$	$0.51 \times \mathrm{V}_{\mathrm{CC}}$	V
V_{1}	Input voltage		0		V_{CC}	V
V_{IH}	AC high-level input voltage	Data inputs, $\overline{\text { CSR }}$	$\mathrm{V}_{\text {REF }}+250 \mathrm{mV}$			V
V_{IL}	AC low-level input voltage	Data inputs, $\overline{\text { CSR }}$			$\mathrm{V}_{\text {REF }}-250 \mathrm{mV}$	V
V_{IH}	DC high-level input voltage	Data inputs, $\overline{\text { CSR }}$	$\mathrm{V}_{\text {REF }}+125 \mathrm{mV}$			V
V_{IL}	DC low-level input voltage	Data inputs, $\overline{\mathrm{CSR}}$			$\mathrm{V}_{\text {REF }}$-125 mV	V
V_{IH}	High-level input voltage	RESET, Cn	$0.65 \times \mathrm{V}_{\mathrm{CC}}$			V
V_{IL}	Low-level input voltage	RESET, Cn			$0.35 \times \mathrm{V}_{\text {CC }}$	V
VICR	Common-mode input voltage range	CLK, CLK	0.675		1.125	V
$\mathrm{V}_{\text {I }}(\mathrm{PP})$	Peak-to-peak input voltage	CLK, CLK	600			mV
${ }^{\mathrm{O}} \mathrm{OH}$	High-level output current				-8	mA
I_{OL}	Low-level output current				8	
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		0		70	${ }^{\circ} \mathrm{C}$

NOTE 4: The $\overline{R E S E T}$ and Cn inputs of the device must be held at valid logic voltage levels (not floating) to ensure proper device operation. The differential inputs must not be floating unless RESET is low. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		V CC	MIN	TYP†	MAX	UNIT
V_{OH}		$\mathrm{I} \mathrm{OH}=-100 \mu \mathrm{~A}$		1.7 V to 1.9 V	$\mathrm{V}_{\mathrm{CC}}-0.2$			V
		$\mathrm{OH}=-6 \mathrm{~mA}$		1.7 V	1.2			
VOL		$\mathrm{IOL}=100 \mu \mathrm{~A}$		1.7 V to 1.9 V			0.2	V
		$\mathrm{IOL}=6 \mathrm{~mA}$		1.7 V			0.5	
1	All inputs \ddagger	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND		1.9 V			± 5	$\mu \mathrm{A}$
ICC	Static standby	$\begin{array}{\|l} \hline \overline{\mathrm{RESET}}=\mathrm{GND} \\ \hline \overline{\mathrm{RESET}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}(\mathrm{AC})} \text { or } \mathrm{V}_{\mathrm{IL}(\mathrm{AC})} \\ \hline \end{array}$	$10=0$	1.9 V			100	
	Static operating						40	mA
${ }^{\text {ICCD }}$	Dynamic operating clock only	$\overline{\mathrm{RESET}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{AC})$ or $\mathrm{V}_{\mathrm{IL}}(\mathrm{AC})$, CLK and CLK switching 50% duty cycle	$\mathrm{l}=0$	1.8 V	28			$\begin{gathered} \mu \mathrm{A} / \\ \mathrm{MHz} \end{gathered}$
	Dynamic operating per each data input, 1:1 configuration	$\overline{\text { RESET }}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}(\mathrm{AC})}$ or $\mathrm{V}_{\mathrm{IL}(\mathrm{AC})}$, CLK and CLK switching 50% duty cycle, One data input switching at one-half clock frequency, 50% duty cycle			1836			$\mu \mathrm{A} /$ clock MHz/ D input
	Dynamic operating per each data input, 1:2 configuration							
ICCDLP	Chip-select-enabled low-power active mode - clock only	$\overline{\mathrm{RESET}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}(\mathrm{AC}} \text { or } \mathrm{V}_{\mathrm{IL}(\mathrm{AC})} \text {, }$ CLK and CLK switching 50% duty cycle	$\mathrm{l}=0$	1.8 V	27			$\begin{gathered} \mu \mathrm{A} / \\ \mathrm{MHz} \end{gathered}$
	Chip-select-enabled low-power active mode1:1 configuration	$\overline{\text { RESET }}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}(\mathrm{AC})}$ or $\mathrm{V}_{\mathrm{IL}(\mathrm{AC})}$, CLK and CLK switching 50% duty cycle, One data input switching at one-half clock frequency, 50% duty cycle			2			$\mu \mathrm{A} /$ clock MHz/ D input
	Chip-select-enabled low-power active mode1:2 configuration				2			
C_{i}	Data inputs, $\overline{\mathrm{CSR}}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {REF }} \pm 250 \mathrm{mV}$		1.8 V	2.5	3	3.5	pF
	CLK, $\overline{\text { CLK }}$	$\mathrm{V}_{\text {ICR }}=0.9 \mathrm{~V}, \mathrm{~V}_{\text {I(PP }}$ ($=600 \mathrm{mV}$			2		3	
	$\overline{\text { RESET }}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND			2.5			

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger Each $\vee_{\text {REF }}$ pin (A3 or T3) should be tested independently, with the other (untested) pin open.
timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1 and Note 5)

			MIN MAX	UNIT
$\mathrm{f}_{\text {clock }}$	Clock frequency		500	MHz
t_{w}	Pulse duration, CLK, $\overline{\mathrm{CLK}}$ high or low		1	ns
tact	Differential inputs active time (see Note 6)		10	ns
tinact	Differential inputs inactive time (see Note 7)		15	ns
$\mathrm{t}_{\text {su }}$	Setup time	$\overline{\text { DCS }}$ before CLK $\uparrow, \overline{\mathrm{CLK}} \downarrow, \overline{\mathrm{CSR}}$ high; $\overline{\mathrm{CSR}}$ before CLK\uparrow, $\overline{\mathrm{CLK}} \downarrow, \overline{\mathrm{DCS}}$ high	0.7	ns
		$\overline{\overline{D C S}}$ before CLK \uparrow, $\overline{\mathrm{CLK}} \downarrow, \overline{\mathrm{CSR}}$ low	0.5	
		DODT, DCKE, and Data before CLK \uparrow, $\overline{C L K} \downarrow$	0.5	
th	Hold time	$\overline{\text { DCS, }}$, DODT, DCKE, and Data after CLK¢, $\overline{\text { CLK }} \downarrow$	0.5	ns

NOTES: 5. All input slew rates are $1 \mathrm{~V} / \mathrm{ns} \pm 20 \%$.
6. $V_{\text {REF }}$ must be held at a valid input level and data inputs must be held low for a minimum time of $t_{\text {act }}$ max, after $\overline{R E S E T}$ is taken high.
7. $V_{\text {REF }}$, data, and clock inputs must be held at valid voltage levels (not floating) for a minimum time of $t_{\text {inact }}$ max, after $\overline{\mathrm{RESET}}$ is taken low.
switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	то (OUTPUT)	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V} \\ \pm 0.1 \mathrm{~V} \end{gathered}$		UNIT
			MIN	MAX	
${ }_{\text {fmax }}$			500		MHz
$t_{\text {pdm }}{ }^{\dagger}$	CLK and $\overline{\text { CLK }}$	Q	1.4	2.5	ns
${ }^{\text {pdmss }}{ }^{\dagger}$	CLK and CLK	Q		2.7	ns
${ }_{\text {tRPHL }}{ }^{\dagger}$	$\overline{\text { RESET }}$	Q		3	ns

\dagger Includes 350-ps test-load transmission-line delay
output slew rates over recommended operating free-air temperature range (unless otherwise noted) (see Figure 2)

PARAMETER	FROM	TO	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V} \\ \pm 0.1 \mathrm{~V} \end{gathered}$	UNIT
			MIN MAX	
dV/dt_r	20\%	80\%	1.94 .9	V/ns
dV/dt_f	80\%	20\%	1.94 .9	V/ns
dV/dt_ § $^{\text {S }}$	20\% or 80\%	80\% or 20%	1	V/ns

[^0]
PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_{L} includes probe and jig capacitance.
B. $I_{C C}$ tested with clock and data inputs held at V_{CC} or GND , and $\mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA}$.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$, input slew rate $=1 \mathrm{~V} / \mathrm{ns} \pm 20 \%$ (unless otherwise noted).
D. The outputs are measured one at a time with one transition per measurement.
E. $V_{R E F}=V_{C C} / 2$
F. $V_{I H}=V_{R E F}+250 \mathrm{mV}$ (ac voltage levels) for differential inputs. $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}$ for LVCMOS input.
G. $V_{I L}=V_{R E F}-250 \mathrm{mV}$ (ac voltage levels) for differential inputs. $\mathrm{V}_{\mathrm{IL}}=$ GND for LVCMOS input.
H. $V_{I(P P)}=600 \mathrm{mV}$
I. $\mathrm{t}_{\mathrm{PLH}}$ and tPHL are the same as t_{pd}.

Figure 1. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT
HIGH-TO-LOW SLEW-RATE MEASUREMENT

LOAD CIRCUIT
LOW-TO-HIGH SLEW-RATE MEASUREMENT

VOLTAGE WAVEFORMS
HIGH-TO-LOW SLEW-RATE MEASUREMENT

VOLTAGE WAVEFORMS
LOW-TO-HIGH SLEW-RATE MEASUREMENT
A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics:
$\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$, input slew rate $=1 \mathrm{~V} / \mathrm{ns} \pm 20 \%$ (unless otherwise specified).
Figure 2. Output Slew-Rate Measurement Information

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
SN74SSTU32864NMJR	ACTIVE	NFBGA	NMJ	96	1000	RoHS \& Green	SNAGCU	Level-3-260C-168 HR	0 to 70	SU864	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device
${ }^{(6)}$ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TeXAS
PACKAGE MATERIALS INFORMATION
INSTRUMENTS

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width W1 $(\mathbf{m m})$	A0 $(\mathbf{m m})$	B0 $(\mathbf{m m})$	K0 $(\mathbf{m m})$	P1 $(\mathbf{m m})$	W $(\mathbf{m m})$	Pin1 Quadrant
SN74SSTU32864NMJR	NFBGA	NMJ	96	1000	330.0	24.4	5.85	13.85	1.8	8.0	24.0	Q1

PACKAGE MATERIALS INFORMATION

All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74SSTU32864NMJR	NFBGA	NMJ	96	1000	336.6	336.6	41.3

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.

TEXAS

INSTRUMENTS

NOTES: (continued)
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. Refer to Texas Instruments Literature number SNVA009 (www.ti.com/lit/snva009).

TeXAs

INSTRUMENTS

NOTES: (continued)
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other Tl intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.
TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

[^0]: § Difference between dV/dt_r (rising edge rate) and dV/dt_f (falling edge rate)

