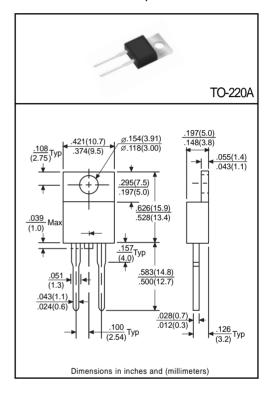


DC COMPONENTS CO., LTD.

RECTIFIER SPECIALISTS

HER801 THRU HER806

TECHNICAL SPECIFICATIONS OF HIGH EFFICIENCY RECTIFIER VOLTAGE RANGE - 50 to 600 Volts CURRENT - 8.0 Amperes


FEATURES

- * Low switching noise
- * Low forward voltage drop
- * High current capability
- * High speed switching
- * High surge capability
- * High reliability

MECHANICAL DATA

- * Case: Molded plastic
- * Epoxy: UL 94V-0 rate flame retardant
- * Terminals: Solder plated, solderable per
 - MIL-STD-750, Method 2026
- * Mounting position: Any * Weight: 2.24 grams

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS Rating at 25°C ambient tempature unless ohterwise specified Single phase, half wave 60 HZ, resistive or inductive load. For capacitive load, derate current by 20%.

		SYMBOL	HER801	HER802	HER803	HER804	HER805	HER806	UNITS
Maximum Recurrent Peak Reverse Voltage		VRRM	50	100	200	300	400	600	Volts
Maximum RMS Voltage		VRMS	35	70	140	210	280	420	Volts
Maximum DC Blocking Voltage		VDC	50	100	200	300	400	600	Volts
Maximum Average Forward Rectified Current at TA = 75°C		lo	8.0						Amps
Peak Forward Surge Current 8.3 ms single half sine-wave superimposed on rated load (JEDEC Method)		IFSM	150			125			Amps
Maximum Instantaneous Forward Voltage at 8.0A DC		VF	1.0		1.3		1.7	Volts	
Maximum DC Reverse Current	@Tc = 25°C	1-	10						μAmps
at Rated DC Blocking Voltage	@Tc = 100°C	- IR	500						μAmps
Maximum Reverse Recovery Time (Note 1)		trr	50			7	5	100	nSec
Typical Junction Capacitance (Note 2)		Cı	120		70		pF		
Operating and Storage Temperature Range		TJ, TSTG	-55 to +150						°C

NOTES: 1. Test Conditions: IF = 0.5A, IR = 1.0A, IRR = 0.25A

- 2. Measured at 1 MHz and applied reverse voltage of 4.0 volts.
- 3. Suffix "R" for Reverse Polarity
- 4. Suffix "F" Stands for "ITO-220" package. (e.g.: HER801F, HER806F,etc)

REV-3,MAR,2017 1 www.dccomponents.com

RATING AND CHARACTERISTIC CURVES (HER801 THRU HER806)

FIG.1- TEST CIRCUIT DIAGRAM AND REVERSE RECOVERY TIME CHARACTERISTIC 50Ω 10Ω |**←** trr **→**| NONINDUCTIVE NONINDUCTIVE D.U.T 0 (+)PULSE -0.254 25 Vdc GENERATOR (approx) (NOTE 2) 1Ω OSCILLOSCOPE NON-(NOTE 1) INDUCTIVE NOTES:1 Rise Time = 7ns max. Input Impendee = SET TIME BASE FOR 1 megohm. 22pF. 2 Rise Time = 10ns max. Souce Impendce =

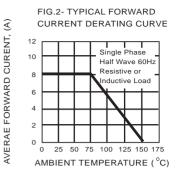
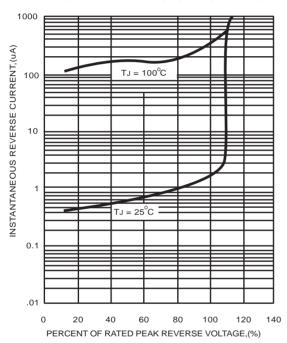



FIG.3- TYPICAL REVERSE CHARACTERISTICS

50 ohms.

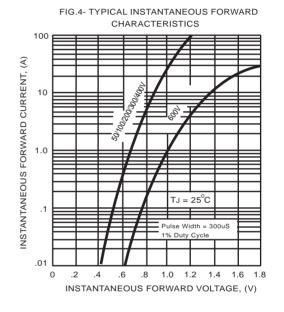
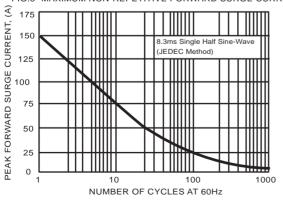
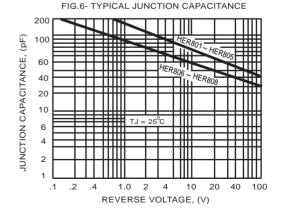




FIG.5- MAXIMUM NON-REPETITIVE FORWARD SURGE CURRENT

Disclaimer

Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold *DC COMPONENTS* are harmless against all damages.

DC COMPONENTS disclaims any and all liability arising out of the application or use of any product, including consequential or incidental damages. Statement regarding the suitability of products for certain types of applications are based on DC COMPONENTS's knowledge of typical requirements that are often placed on DC COMPONENTS products in generic applications. Such statements are not binding statements about the suitability of products for aparticular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application.

DC COMPONENTS reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein, and disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Parameters provided in datasheets and specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify *DC COMPONENTS* sterms and conditions of purchase, including but not limited to the warranty expressed therein.

Unless otherwise in writing, *DC COMPONENTS* products are intended for use as general electronic components in standard applications (eg: Consumer electronic, Computer equipment, Office equipment, etc.), and not recommended for use in a high specific application where a failure or malfunction of the device could result in human injury or death (eg: Aerospace equipment, Submarine cables, Combustion equipment, Safety devices, Life support systems, etc.)

Customers using or selling *DC COMPONENTS* products not expressly indicated for use in such applications do so at their own risk. If customer intended to use *DC COMPONENTS* standard quality grade devices for applications not envisioned by *DC COMPONENTS*, please contact our sales representatives in advance.

