

E-paper Display Series

GDEH075Z90

Dalian Good Display Co., Ltd.

Product Specifications

Customer	Standard
Description	7.5" E-PAPER DISPLAY
Model Name	GDEH075Z90
Date	2020/05/25
Revision	1.2

Design Engineering							
Approval Check Design							
宝刘印玉	心李	之矣 印良					

Zhongnan Building, No.18, Zhonghua West ST,Ganjingzi DST,Dalian,CHINA

Tel: +86-411-84619565 Fax: +86-411-84619585-810

Email: info@good-display.com Website: www.good-display.com

Table of Contents

1.	General Description	5
	1.1 Overview	5
	1.2 Feature	5
	1.3 Mechanical Specification	5
	1.4 Mechanical Drawing of EPD module	6
	1.5 Input/Output Terminals	7
	1.6 Reference Circuit	9
	1.7 Matched Development Kit	10
2.	Environmental	11
	2.1 Handling, Safety and Environmental Requirements	11
	2.2 Reliability test	13
3.	Electrical Characteristics	14
	3.1 Absolute maximum rating	14
	3.2 DC Characteristics	14
	3.3 Serial Peripheral Interface Timing	15
	3.4 Power Consumption	
	3.5 MCU Interface	16
4.	Typical Operating Sequence	20
	4.1 Normal Operation Flow	20
5.	Command Table	21
6.	Optical characteristics	33
	6.1 Specifications	33
	6.2 Definition of contrast ratio	34
	6.3 Reflection Ratio	
7.	Point and line standard	
	Packing	
	Precautions	

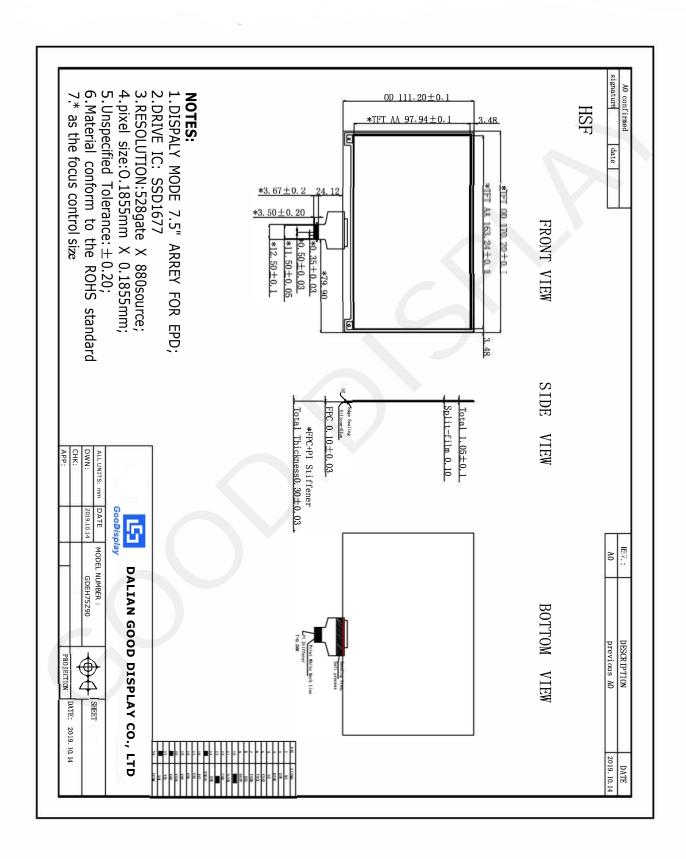
Version	Content	Date	Producer
1.0	New release	2019/10/14	1
1.1	Updating: 1.6 Reference Circuit	2020/03/30	
1.2	Updating: 1.6 Reference Circuit	2020/05/25	
		\mathcal{I}	

1. General Description

1.1 Overview

GDEH075Z90 is an Active Matrix Electrophoretic Display (AMEPD), with interface and a reference system design. The 7.5" active area contains528×880 pixels, and has 1-bit B/W/R full display capabilities. An integrated circuit contains gate buffer, source buffer, interface, timing control logic, oscillator, DC-DC. SRAM.LUT, VCOM and border are supplied with each panel.

1.2 Features


- 528×880 pixels display
- High contrast
- High reflectance
- Ultra wide viewing angle
- Ultra low power consumption
- Pure reflective mode
- Bi-stable display
- Commercial temperature range
- Landscape, portrait modes
- Hard-coat antiglare display surface
- Ultra Low current deep sleep mode
- On chip display RAM
- Low voltage detect for supply voltage
- High voltage ready detect for driving voltage
- Internal temperature sensor
- 10-byte OTP space for module identification
- Waveform stored in On-chip OTP
- Serial peripheral interface available
- On-chip oscillator
- On-chip booster and regulator control for generating VCOM, Gate and Source driving voltage
- I2C signal master interface to read external temperature sensor/built-in temperature sensor

1.3 Mechanical Specifications

Parameter	Parameter Specifications		Remark
Screen Size	7.5	Inch	
Display Resolution	880(V)×528(H)	Pixel	Dpi:137
Active Area	163.24(H)×97.94(V)	mm	
Pixel Pitch 0.1855×0.1855		mm	
Pixel Configuration	Rectangle		
Outline Dimension	170.2(H)×111.2 (V) ×1.25(D)	mm	
Weight	31±0.2	g	

1.4 Mechanical Drawing of EPD module

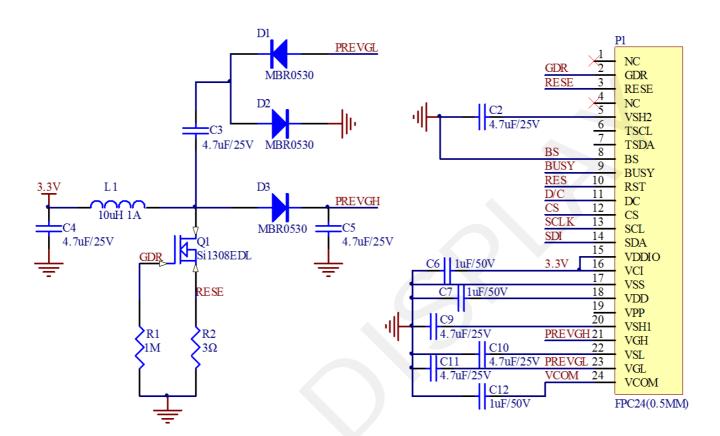
1.5 Input/Output Terminals

Pin#	Single	Description	Remark
1	NC	No connection and do not connect with other NC pins	Keep Open
2	GDR	N-Channel MOSFET Gate Drive Control	
3	RESE	Current Sense Input for the Control Loop	
4	NC	No connection and do not connect with other NC pins e	Keep Open
5	VSH2	Positive Source driving voltage	
6	TSCL	I2C Interface to digital temperature sensor Clock pin	
7	TSDA	I2C Interface to digital temperature sensor Date pin	
8	BS1	Bus selection pin	Note 1.5-5
9	BUSY	Busy state output pin	Note 1.5-4
10	RES#	Reset	Note 1.5-3
11	D/C #	Data /Command control pin	Note 1.5-2
12	CS#	Chip Select input pin	Note 1.5-1
13	SCL	serial clock pin (SPI)	
14	SDA	serial data pin (SPI)	
15	VDDIO	Power for interface logic pins	
16	VCI	Power Supply pin for the chip	
17	VSS	Ground	
18	VDD	Core logic power pin	
19	VPP	Power Supply for OTP Programming	
20	VSH1	Positive Source driving voltage	
21	VGH	Power Supply pin for Positive Gate driving voltage and VSH	
22	VSL	Negative Source driving voltage	
23	VGL	Power Supply pin for Negative Gate driving voltage, VCOM and VSL	
24	VCOM	VCOM driving voltage	

Note 1.5-1: This pin (CS#) is the chip select input connecting to the MCU. The chip is enabled for MCU communication: only when CS# is pulled LOW.

Note 1.5-2: This pin (D/C#) is Data/Command control pin connecting to the MCU. When the pin is pulled HIGH,

the data will be interpreted as data. When the pin is pulled LOW, the data will be interpreted as command.


Note 1.5-3: This pin (RES#) is reset signal input. The Reset is active low. Note 1.5-4: This pin (BUSY) is Busy state output pin. When Busy is High the operation of chip should not be interrupted and any commands should not be issued to the module. The driver IC will put Busy pin High when the

driver IC is working such as:

- Outputting display waveform; or
- Communicating with digital temperature sensor

Note 1.5-5: This pin (BS1) is for 3-line SPI or 4-line SPI selection. When it is "Low", 4-line SPI is selected. When it is "High", 3-line SPI (9 bits SPI) is selected.

1.6 Reference Circuit

1.7 Matched Development Kit

Our Development Kit designed for SPI E-paper Display aims to help users to learn how to use E-paper Display more easily. It can refresh black-white E-paper Display and three-color (black, white and red/Yellow) Good Display 's E-paper Display. And it is also added the functions of USB serial port, Raspberry Pi and LED indicator light ect.

DESPI Development Kit consists of the development board and the pinboard.

More details about the Development Kit, please click to the following link:

http://www.e-paper-display.com/products_detail/productId=402.html

2. Environmental

2.1 HANDLING, SAFETY AND ENVIROMENTAL REQUIREMENTS

WARNING

The display module should be kept flat or fixed to a rigid, curved support with limited bending along the long axis. It should not be used for continual flexing and bending. Handle with care. Should the display break do not touch any material that leaks out. In case of contact with the leaked material then wash with water and soap.

CAUTION

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components.

Disassembling the display module can cause permanent damage and invalidate the warranty agreements.

IPA solvent can only be applied on active area and the back of a glass. For the rest part, it is not allowed.

Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged. Moreover the display is sensitive to static electricity and other rough environmental conditions.

Mounting Precautions

- (1) It`s recommended that you consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module.
- (2) It's recommended that you attach a transparent protective plate to the surface in order to protect the EPD. Transparent protective plate should have sufficient strength in order to resist external force.
- (3) You should adopt radiation structure to satisfy the temperature specification.
- (4) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the PS at high temperature and the latter causes circuit break by electro-chemical reaction.
- (5) Do not touch, push or rub the exposed PS with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of PS for bare hand or greasy cloth. (Some cosmetics deteriorate the PS)
- (6) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach the PS. Do not use acetone, toluene and alcohol because they cause chemical damage to the PS.
- (7) Wipe off saliva or water drops as soon as possible. Their long time contact with PS causes deformations and color fading.

	Data sheet status
Product specification	The data sheet contains final product specifications.

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and dose not form part of the specification.

Product Environmental certification				
ROHS				
	REMARK			

All The specifications listed in this document are guaranteed for module only. Post-assembled operation or component(s) may impact module performance or cause unexpected effect or damage and therefore listed specifications is not warranted after any Post-assembled operation.

2.2 Reliability test

	TEST	CONDITION	METHOD	REMARK
1	High-Temperature Operation	T=40°C , RH=35%RH , For 240Hr	IEC 60 068-2-2Bb	
2	Low-Temperature Operation	T = 0°C for 240 hrs	IEC 60 068-2-2Ab	
3	High-Temperature Storage	T=60°C RH=35% RH For 240Hr Test in white pattern	IEC 60 068-2-2Bb	
4	Low-Temperature Storage	T = -25°C for 240 hrs Test in white pattern	IEC 60 068-2-2Ab	
5	High Temperature, High- Humidity Operation	T=40°C , RH=80%RH , For 168Hr	IEC 60 068-2-3CA	
6	High Temperature, High- Humidity Storage	T=50°C , RH=80%RH , For 240Hr Test in white pattern	IEC 60 068-2-3CA	
7	Temperature Cycle	-25°C(30min)~60°C(30min), 50 Cycle Test in white pattern	IEC 60 068-2-14NB	
8	Package Vibration	1.04G,Frequency: 10~500Hz Direction: X,Y,Z Duration:1hours in each direction	Full packed for shipment	
9	Package Drop Impact	Drop from height of 100 cm on Concrete surface Drop sequence:1 corner, 3edges, 6face One drop for each.	Full packed for shipment	
10	UV exposure Resistance	765 W/m² for 168hrs,40°C	IEC 60068-2-5 Sa	
11	Electrostatic discharge	Machine model: +/-250V,0Ω,200pF	IEC61000-4-2	

Actual EMC level to be measured on customer application.

Note1: Stay white pattern for storage and non-operation test.

Note2: Operation is black/white/red pattern, hold time is 150S.

Note3 : The function, appearance, opticals should meet the requirements of the test before and after the test. Note4 : Keep testing after 2 hours placing at $20^{\circ}\text{C}-25^{\circ}\text{C}$.

3. Electrical Characteristics

3.1 ABSOLUTE MAXIMUM RATING

Table 3.1-1: Maximum Ratings

Symbol	Parameter	Rating	Unit	Humidity	Unit	Note
V_{CI}	Logic supply voltage	-0.5 to +6.0	V	-	-	
T_{OPR}	Operation temperature range	0 to 40	°C	45 to70	%	Normal use is recommended to refresh every 24 hours
-	Transportation temperature range	-25 to 60	°C	-	-	Note3.1-1
Tstg	Storage condition	0 to 40	°C	45 to 70	%	Maximum storage time: 5 years
-	After opening the package	0 to 40	°C	45 to 70	%	

Note3.1-1:The transport time is within 10 days for $-25^{\circ}\text{C} \sim 0^{\circ}\text{C}$ or $40^{\circ}\text{C} \sim 60^{\circ}\text{C}$ Note 3.1-2: When the three-color product is stored. The display screen should be kept white and face up. In addition, please be sure to refresh the e-paper every three months.

3.2 DC CHARACTERISTICS

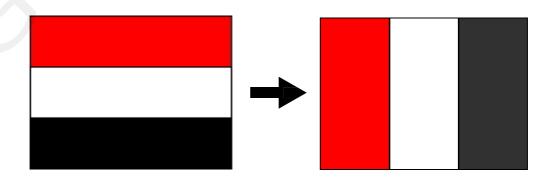

The following specifications apply for: VSS=0V, VCI=3.3V, TOPR=25 °C.

Table 3.2-1: DC Characteristics

Symbol	Parameter	Test Condition	Applicable pin	Min.	Тур.	Max.	Unit
VCI	VCI operation voltage	-	VCI	2.2	3	3.7	V
VIH	High level input voltage	-	SDA, SCL, CS#, D/C#,	0.8VDDIO	-	-	V
VIL	Low level input voltage	-	RES#, BS1	-	-	0.2VDDIO	V
VOH	High level output voltage	IOH = -100uA	BUSY,	0.9VDDIO	-	-	V
VOL	Low level output voltage	IOL = 100uA		-	-	0.1VDDIO	V
Iupdate	Module operating current	-	-	-		18	mA
Isleep	Deep sleep mode	VCI=3.3V	-	-		2	uA

- The Typical power consumption is measured using associated 25° C waveform with following pattern transition: from horizontal scan pattern to vertical scan pattern. (Note 3.2-1)
- The listed electrical/optical characteristics are only guaranteed under the controller & waveform provided by Good Display.
- Vcom value will be OTP before in factory or present on the label sticker.

Note 3.2-1 The Typical power consumption

3.3 Serial Peripheral Interface Timing

The following gdYVJZJVVh]cbg Udd`mZcf. J GG1 \$J ž J 7=1 &"&J hc" "+J ž HC DF 1 &)

Write mode

Symbol	Parameter	Min	Тур	Max	Unit
fSCL	SCL frequency (Write Mode)			20	MHz
tCSSU	Time CSB has to be low before the first rising edge of SCLK	20			ns
tCSHLD	Time CSB has to remain low after the last falling edge of SCLK	20			ns
tCSHIGH	Time CSB has to remain high between two transfers	100			ns
tSCLHIGH	Part of the clock period where SCL has to remain high	25			ns
tSCLLOW	Part of the clock period where SCL has to remain low	25			ns
tSISU	Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL	10			ns
tSIHLD	Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL	40			ns

Read mode

Symbol	Parameter	Min	Тур	Max	Unit
fSCL	SCL frequency (Read Mode)			2.5	MHz
tCSSU	Time CSB has to be low before the first rising edge of SCLK	100			ns
tCSHLD	Time CSB has to remain low after the last falling edge of SCLK	50			ns
tCSHIGH	Time CSB has to remain high between two transfers	250			ns
tSCLHIGH	Part of the clock period where SCL has to remain high	180			ns
tSCLLOW	Part of the clock period where SCL has to remain low	180			ns
tSOSU	Time SO(SDA Read Mode) will be stable before the next rising edge of SCL		50		ns
tSOHLD	Time SO (SDA Read Mode) will remain stable after the falling edge of SCL		0		ns

Note: All timings are based on 20% to 80% of VDDIO-VSS



Figure 3.3-1: Serial peripheral interface characteristics

3.4 Power Consumption

Parameter	Symbol	Conditions	TYP	Max	Unit	Remark
Panel power consumption during update	-	25°C		300	mAs	-
Deep sleep mode	-	25° C		2	uA	-

 $Mas=update average current \times update time$

3.5 MCU Interface

3.5.1MCU interface selection

GDEH075Z90 can support 4-wire or 3-wire serial peripheral MCU interface, which is pin selectable by BS1 pin. The interface pin assignment for different MCU interfaces is shown in Table 3.5-1.

Note

- (1) L is connected to VSS
- (2) H is connected to VDDIO

Table 3.5-1: Interface pin assignment for different MCU interfaces

		Pin Name													
MCU Interface	BS1	RES#	CS#	D/C#	SCL	SDI	SDO								
4-wire serial peripheral interface (SPI)	L	Required	Required	Required	SCL	SDI	SDO								
3-wire serial peripheral interface (SPI) – 9 bits SPI	Н	Required	Required	L	SCL	SDI	SDO								

3.5.2 MCU Serial Peripheral Interface (4-wire SPI)

The 4-wire SPI consists of serial clock SCL, serial data input SDI, D/C# and CS#. The control pins status in 4-wire SPI in writing command/data is shown in Table 1.5-2 and the write procedure in 4-wire SPI is shown in Figure 1.5-1..

Table 3.5-2: Control pins status of 4-wire SPI

Function	SCL pin	SDI pin	D/C# pin	CS# pin
Write command	↑	Command bit	L	L
Write data	↑	Data bit	Н	L

Note:

- (1) L is connected to VSS and H is connected to VDDIO
- (2) ↑ stands for rising edge of signal
- (3) SDI is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0. The level of D/C# should be kept over the whole byte. The data byte in the shift register is written to the Graphic Display Data RAM (RAM)/Data Byte register or command Byte register according to D/C# pin.

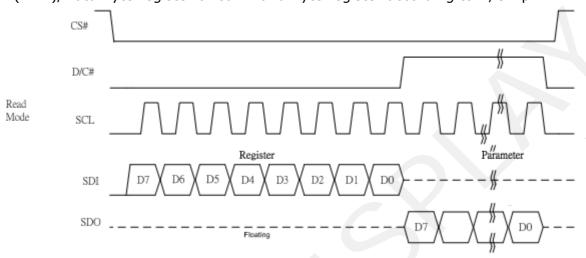


Figure 3.5-1: wire mode

In the read operation, after CS# is pulled low, the first byte sent is command byte, D/C# is pulled low. After command byte sent, the following byte(s) read are data byte(s), so D/C# bit is then pulled high. An 8-bit data will be shifted out on every clock falling edge. The serial data output SDO bit shifting sequence is D7, D6, to D0 bit. Figure 6-2 shows the read procedure in 4-wire SPI.

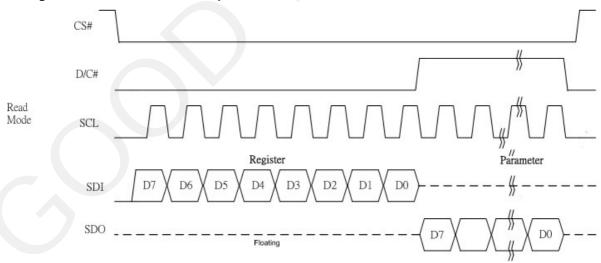


Figure 3.5-2: Read procedure in 4-wire SPI mode

3.5.3 MCU Serial Peripheral Interface (3-wire SPI)

The 3-wire SPI consists of serial clock SCL, serial data input SDI, and CS#. The operation is similar to 4- wire SPI while D/C# pin is not used and it must be tied to LOW. The control pins status in 3-wire SPI is shown in Table 3.5-3.

In the write operation, a 9-bit data will be shifted into the shift register on every clock rising edge. The bit shifting sequence is D/C# bit, D7 bit, D6 bit to D0 bit. The first bit is D/C# bit which determines the following byte is command or data. When D/C# bit is 0, the following byte is command. When D/C# bit is 1, the following byte is data. Table 3.5-3 shows the write procedure in 3-wire SPI

Function	SCL pin	SDI pin	D/C# pin	CS# pin
Write command	↑	Command bit	Tie LOW	L
Write data	↑	Data bit	Tie LOW	L

Note:

- (1) L is connected to VSS and H is connected to VDDIO
- (2) ↑ stands for rising edge of signal



Figure 3.5-3: Write procedure in 3-wire SPI mode

In the read operation, serial data are transferred in the unit of 9 bits. After CS# pull low, the first byte is command byte, the D/C# bit is as 0 and following with the register byte. After command byte send, the following byte(s) are data byte(s), with D/C# bit is 1. After D/C# bit sending from MCU, an 8-bit data will be shifted out on every clock falling edge. The serial data output SDO bit shifting sequence is D7, D6, to D0 bit. Figure 7-4 shows the read procedure in 3-wire SPI.

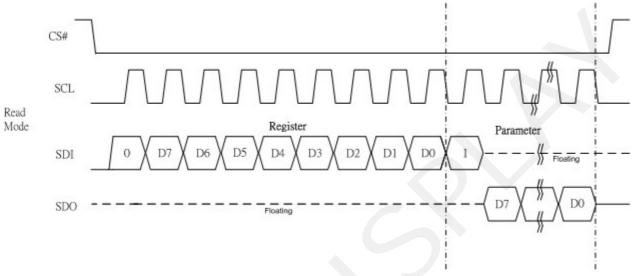
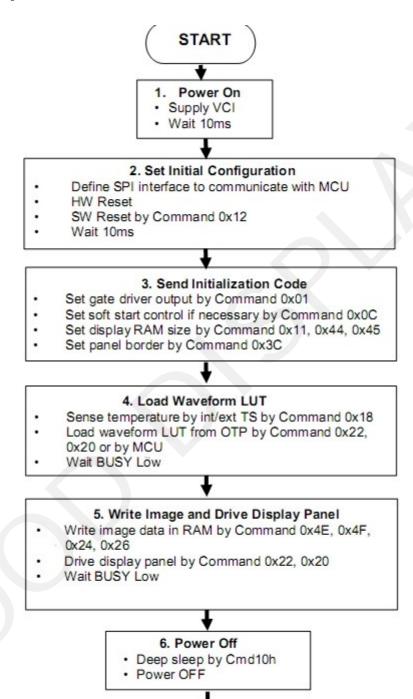



Figure 3.5-4: Read procedure in 3-wire SPI mode

4. Typical Operating Sequence

4.1 Normal Operation Flow

5. COMMAND TABLE

	nd Table		ı		1	ı	1	1	1	1	T					
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description				
)	0	01	0	0	0	0	0	0	0	1	Driver Output control	A[9:0] = 2A7h [POR], 680 MUX				
1	1		A7	A6	A5	A4	A3	A2	A1	A0		MUX Gate lines setting as (A[9:0] + 1).			
	1		0	0	0	0	0	0	A9	A8		B[2:0] = 000 [POR].				
	1		0		0	0	0	B2	B1	В0		Gate scanning sequence and di	rection			
												B[2]: GD Selects the 1st output Gate GD=0 [POR], G0 is the 1st gate output chann output sequence is G0,G1, G2, GD=1, G1 is the 1st gate output chann output sequence is G1, G0, G3 B[1]: SM Change scanning order of gate SM=0 [POR], G0, G1, G2, G3679 (left and interlaced) SM=1, G0, G2, G4G678, G1, G3,	G3, el, gate , G2, driver.			
												B[0]: TB TB = 0 [POR], scan from G0 to TB = 1, scan from G679 to G0				
	0	03	0	0	0	0	0	0	1	1	Gate Driving voltage Control	Set Gate driving voltage A[4:0] = 00h [POR] VGH setting from 12V to 20V A[4:0] VGH A[4:0] 00h 20 10h 07h 12 11h 08h 12.5 12h 09h 13 13h 0Ah 13.5 14h 0Bh 14 15h 0Ch 14.5 16h 0Dh 15 17h 0Eh 15.5 Other				
												Urn 10				
			<i>y</i>	1		l	l	l	1		1					

V#	D/C#	Hex	D 7	D6	D5	D4	D 3	D2	D	1	D0	Comma	nd	Description
	0	04	0	0	0	0	0	1	0		0	Source I	Oriving voltage	Set Source driving voltage
	1		A	A6	A5	A4	A	A2	A	1	A2	Control		A[7:0] = 41h [POR], VSH1 at 15V
			7		B5	B4	3 B3	B2						B[7:0] = A8h [POR], VSH2 at 5V.
	1		B7 C7	B6 C6	C5	C4	C3		В		B0			C[7:0] = 32h [POR], VSL at -15V
[7] = 1,	1		C/	Co	CS	C4	C3	C2 A[7]/E	[7] = 0		C0			C[7] = 0,
	ltage settin	g from 2	.4V to								setting	from 9V		VSL setting from -9V to -17V
8V	7.01 ! VCI	11/1/011/	2 ! A/	D[7.01	. Vet	II /V/CI	12	to 17V		VCIII/	70112	: A /DE7:01 :	VOITI /VOITA	CIT-01 VGI
A/B[7	2.4	H1/VSH2	AI	B[7:0]	5.7	I1/VSF	12	23h		VSH1/	VSH2	A/B[7:0] 3Ch	VSH1/VSH2	C[7:0] VSL 1Ah -9
8Fh	2.4		BO		5.8			24h		9.2		3Dh	14.2	1Ch -9.5
90h	2.5		B1		5.9			25h		9.4		3Eh	14.4	1Eh -10
90n 91h	2.6		B1		5.9		_	26h		9.6		3Fh	14.6	20h -10.5
91h 92h	2.7		B3		6.1		\dashv	27h		9.8		40h	14.8	22h -11
92n 93h	2.8		B4		6.2		\dashv	28h		10		41h	15	24h -11.5
93h 94h	3		B5		6.3		\dashv	29h		10.2			15.2	26h -12
95h	3.1		В6		6.4		\dashv	2Ah		10.4		43h	15.4	28h -12.5
96h	3.2		B7		6.5			2Bh	Ŧ	10.6		44h	15.6	2Ah -13
97h	3.3		B8		6.6			2Ch		10.8		45h	15.8	2Ch -13.5
98h	3.4		B9		6.7			2Dh		11		46h	16	2Eh -14
99h	3.5		BA		6.8			2Eh		11.2		47h	16.2	30h -14.5
9Ah	3.6		BI		6.9			2Fh		11.4		48h	16.4	32h -15
9Bh	3.7		ВС		7			30h		11.6		49h	16.6	34h -15.5
9Ch	3.8		BI		7.1			31h		11.8		4Ah	16.8	36h -16
9Dh	3.9		BE		7.2			32h		12		4Bh	17	38h -16.5
9Eh	4		BF	- Th	7.3			33h 34h		12.2		Other	NA	3Ah -17 Other NA
9Fh	4.1		C)h	7.4			35h		12.4		-		Other NA
A0h	4.2		C1	lh	7.5			36h		12.8		4		
Alh	4.3		C2	2h	7.6			37h		13		+		
A2h	4.4		C3	3h	7.7			38h		13.2		+		
A3h	4.5		C4	lh	7.8			39h		13.4		1		
A4h	4.6		C5	5h	7.9			3Ah	-	13.6		†		
A5h	4.7		C6	5h	8			3Bh	- †	13.8		1		
A6h	4.8		C7	7h	8.1							_		
A7h	4.9		C8	3h	8.2									
A8h	5		C9	9h	8.3									
A9h	5.1		C/	Ah	8.4		\neg							
AAh	5.2		CE	3h	8.5		\neg							Remark:
ABh	5.3		CC	Ch	8.6									VSH1> VSH2
ACh	5.4		CI	Oh	8.7		\exists							
ADh	5.5		CI	Ξh	8.8									
AEh	5.6		Ot	her	NA									
			•											
	0	0F	0	0	0	0	1	1	1	1		ate scan start		nning start position of the gate
	1		A7	A6	A5	A4	Α	3 A2	A	.1 A	0 po	osition	driver. The $A[9:0] = 00$	valid range is from 0 to 679.
	1		0	0	0	0	0	0	A				A[9:0] = 00	INDE TOK
													When TB=	
													SCN [9:0] = When TB=	
							1						SCN [9:0] =	

Comman	d Table											
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0 0	0 0	10	0 0	0 0	0 0	1 0	0 0	0 A2	0 A1	0 A0	Deep Sleep mode	Deep Sleep mode Control: A[1:0]: Description 00 Normal Mode [POR] 01 Enter Deep Sleep Mode 1 11 Enter Deep Sleep Mode 2 After this command initiated, the chip will enter Deep Sleep Mode, BUSY pad will keep output high. Remark: To Exit Deep Sleep mode, User required to send HWRESET to the driver
		ı						l				
0	0	11	0	0	0	0	0	0 A2	O A1	1 A0	Data Entry mode setting	Define data entry sequence A[2:0] = 011 [POR] A [1:0] = ID[1:0] Address automatic increment / decrement setting The setting of incrementing or decrementing of the address counter can be made independently in each upper and lower bit of the address. 00 -Y decrement, X decrement, 01 -Y decrement, X increment, 11 -Y increment, X increment [POR] A[2] = AM Set the direction in which the address counter is updated automatically after data are written to the RAM. AM= 0, the address counter is updated in the X direction. [POR] AM = 1, the address counter is updated in the Y direction.
0	0	12	0	0	0	1	0	0	1	0	SW RESET	It resets the commands and parameters to their S/W Reset default values except R10h-Deep Sleep Mode During operation, BUSY pad will output high. Note: RAM are unaffected by this command.

Comm	and Table											
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	14	0	0	0	1	0	1	0	0	HV Ready Detection	HV ready detection A[6:0] = 00h [POR] The command required CLKEN=1 and ANALOGEN=1. Refer to Register 0x22 for detail. After this command initiated, HV Ready detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).
	La	1.5		Lo	Lo		Ι ο		I 0		WOLD	L HOLD ()
0	0	15	0	0	0	1	0	1	0	1	VCI Detection	VCI Detection A[2:0] = 100 [POR], Detect level at 2.3V
0	1		0	0	0	0	0	A2	A1	A0	5	A[2:0] : VCI level Detect A[2:0] VCI level 011 2.2V 100 2.3V 101 2.4V 110 2.5V 111 2.6V Other NA
												The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail. After this command initiated, VCI detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).
0	0	18	0	0	0	1	1 A3	0	0	0 A0	Temperature Sensor Control	Temperature Sensor Selection A[7:0] = 48h [POR], external temperature
U	1		A7	A6	A5	A4	A3	A2	A1	AU		sensor $A[7:0] = 80h$ Internal temperature sensor
0	0	1A	0	0	0	0	0	0	1	0	Temperature Sensor Control (Write to	Write to temperature register. A[11:0] = 7FFh[POR]
0	1		A1 1	A10	A9	A8	A7	A6	A5	A4	temperature register)	
0	1		A3	A2	A1	A0	0	0	0	0		
0	0	1B	0	0	0	1	1	0	1	1	Temperature Sensor Control (Read from	Read from temperature register.
1	1		A1 1	A10	A9	A8	A7	A6	A5	A4	temperature register)	
1	1		A3	A2	A1	A0	0	0	0	0		

Comma	nd Table											
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	1C	0	0	0	1	1	1	0	0	Temperature Sensor	Write Command to External temperature
0	1		A7	A6	A5	A4	A3	A2	A1	A0	Control (Write	sensor.
0	1		В7	В6	B5	B4	В3	B2	B1	В0	Command to External	A[7:0] = 00h [POR],
0	1		С7	C6	C5	C4	СЗ	C2	C1	СО	temperature sensor)	B[7:0] = 00h [POR], C[7:0] = 00h [POR], A[7:6] A[7:6] A[7:6] Select no of byte to be sent 00 Address + pointer 01 Address + pointer + 1st arameter 10 Address + pointer + 1st parameter + 2nd pointer 11 Address A[5:0] - Pointer Setting B[7:0] - 1st parameter C[7:0] - 2nd parameter The command required CLKEN=1. Refer to Register 0x22 for detail. After this command initiated, Write Command to external temperature sensor starts. BUSY pad will output high during operation.
0	0	20	10	10	1	10	10		10	10	Mostor Activistics	A ativata Diaplay Undata Sassana
0	0	20	0	0	1	0	0	0	0	0	Master Activation	Activate Display Update Sequence The Display Update Sequence Option is located at R22h. BUSY pad will output high during operation. User should not interrupt this operation to avoid corruption of panel images.
0	0	21	0	0	1	0	0	0	0	1	Display Update	RAM content option for Display Update
0	1		A7	A6	A5	A4	A3	A2	Al	A0	Control 1	A[7:0] = 00h [POR] A[7:4] Red RAM option 0000 Normal 0100 Bypass RAM content as 0 1000 Inverse RAM content A[3:0]BW RAM option 0000 Normal 0100 Bypass RAM content as 0 1000 Inverse RAM content as 0
0	0	22	0	0	1	0	0	0	1	0	Display Update Control 2	Display Update Sequence Option: Enable the stage for Master Activation
0	1		A7	A6	A5	A4	A3	A2	A1	A0	Control 2	A[7:0]= FFh (POR)
												Parameter
												Enable Clock Signal, Then Enable ANALOG Then DISPLAY with DISPLAY Mode 1 Then Disable ANALOG Then Disable OSC Enable Clock Signal, Then Enable ANALOG Then DISPLAY with
												Then DISPLAY with DISPLAY Mode 2 Then Disable ANALOG Then Disable OSC Enable Clock Signal, Then Load LUT with DISPLAY Mode 1 Enable Clock Signal, Then Load Temperature value from I2C Single Master Interface B0
												Single Master Interface Then Load LUT with DISPLAY Mode 1

	,		l	l	1		1			
									Enable Clock Signal, Then Load LUT with DISPLAY Mode 2	98
									Enable Clock Signal, Then Load Temperature value from I2C Single Master Interface Then Load LUT with DISPLAY Mode 2	В8
									Enable Clock Signal, Then Load LUT with DISPLAY Mode 1 To Disable Clock Signal Enable Clock Signal,	91
									Then Load Temperature value from I2C Single Master Interface Then Load LUT with DISPLAY Mode 1	B1
									To Disable Clock Signal	
								6	Enable Clock Signal, Then Load LUT with DISPLAY Mode 2 To Disable Clock Signal	99
									Enable Clock Signal Enable Clock Signal Then Load Temperature value from I2C Single Master Interface Then Load LUT with DISPLAY Mode 2 To Disable Clock Signal	В9
									To Bisuele Cicen Signal	
									Enable ANALOG Then DISPLAY with DISPLAY Mode 1 Then Disable ANALOG Then Disable OSC	47
									Enable ANALOG Then DISPLAY with DISPLAY Mode 2 Then Disable ANALOG Then Disable OSC	4F
									T. F. 11 Cl. 1 C. 1	
									To Enable Clock Signal (CLKEN=1)	80
									To Enable Clock Signal, then Enable ANALOG (CLKEN=1,	C0
									ANALOGEN=1)	
									Enable ANALOG Then DISPLAY with DISPLAY Mode 1	44
									Enable ANALOG Then DISPLAY with DISPLAY Mode 2	4C
									To DISPLAY with DISPLAY Mode 1	04
									To DISPLAY with	0C
									DISPLAY Mode 2 To Disable ANALOG,	
									then Disable Clock Signal (CLKEN=0,	03
									ANALOGEN=0) o Disable Clock Signal	01
									(CLKEN=0)	UΙ

Comma	nd Table	;										
R/W#	D/C#	Hex	D7	D6	D5	D4	D 3	D2	D1	D0	Command	Description
0	0	24	0	0	1	0	0	1	0	0	Write RAM (BW)	After this command, data entries will be written into the BW RAM until another command is written. Address pointers will advance accordingly For Write pixel: Content of Write RAM(BW) = 1 For Black pixel: Content of Write RAM(BW) = 0
0	0	26	0	0	1	0	0	1	1	0	Write RAM (RED)	After this command, data entries will be written into the RED RAM until another command is written. Address pointers will advance accordingly. For Red pixel: Content of Write RAM(RED) = 1 For non-Red pixel [Black or White]: Content of Write RAM(RED) = 0
0	0	27	0	0	1	0	0	1	1	1	Read RAM	After this command, data read on the MCU bus will fetch data from RAM [According to parameter of Register 41h to select reading RAM(BW) / RAM(RED)], until another command is written. Address pointers will advance accordingly. The 1st byte of data read is dummy data.
0	0	28	0	0	1	0	1	0	0	0	VCOM Sense	Enter VCOM sensing conditions and hold for duration defined in 29h before reading VCOM value. The sensed VCOM voltage is stored in register The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	20		Lo	Ι.		1		1.0	l 1	MOOM C D	Lean and the second
0 0	1	29	0	0 A6	0	0	A 3	0 A2	0 A1	1 A0	VCOM Sense Duration	Stabling time between entering VCOM sensing mode and reading acquired. A[6]=1, Normal Mode A[6]=0, Reserve A[3:0] = 09h, duration = 10s. VCOM sense duration = Setting + 1 Seconds
0	0	2A	0	0	1	0	1	0	1	0	Program VCOM OTP	Program VCOM register into OTP The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.

Comma	nd Table											
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	2B	0	0	1	0	1	0	1	1	Write Register for	This command is used to reduce glitch
0	1		0	0	0	0	0	1	0	0	VCOM Control	when ACVCOM toggle. Two data bytes D04h and D63h should be set for this
0	1		0	1	1	0	0	0	1	1		command.
			ı	ı		ı			1	1		
0	0	2C	0	0	1	0	1	1	0	0	Write VCOM register	Write VCOM register from MCU interface A[7:0] = 00h [POR]
0	1		A7	A6	A5	A4	A3	A2	A1	A0		A[7:0] VCOM A[7:0] VCOM
												08h -0.2 58h -2.2
												0Ch -0.3 5Ch -2.3
												10h -0.4 60h -2.4
												14h -0.5 64h -2.5
												i i i
												1Ch -0.7 6Ch -2.7
												20h -0.8 70h -2.8
												24h -0.9 74h -2.9
												28h -1 78h -3
												2Ch -1.1 7Ch -3.1
												30h -1.2 80h -3.2
												34h -1.3 84 -3.3
												38h -1.4 88 -3.4
												3Ch -1.5 8C -3.5
												40h -1.6 90 -3.6
												44h -1.7 94 -3.7
												48h -1.8 98 -3.8
												4Ch -1.9 9C -3.9
												50h -2 A0 -4
												54h -2.1
			l	l.								<u>'</u>
0	0	2D	0	0	1	0	1	1	0	1	OTP Register Read for	Read Register for Display Option:
1	1		A7	A6	A5	A4	A3	A2	A1	A0	Display Option	A[7:0]: VCOM OTP Selection
1	1		В7	В6	B5	B4	В3	B2	B1	В0		(Command 0x37, Byte A) B[7:0]: VCOM Register
1	1		C7	C6	C5	C4	C3	C2	C1	C0		(Command 0x2C)
1	1		D7	D6	D5	D4	D3	D2	D1	D0		C[7:0]~G[7:0]: Display Mode
1	1		E7	E6	E5	E4	E3	E2	E1	E0		(Command 0x37, Byte B to Byte G) [5 bytes]
1	1		F7	F6	F5	F4	F3	F2	F1	F0		H[7:0]~K[7:0]: Waveform Version
1	1		G7	G6	G5	G4	G3	G2	G1	G0		(Command 0x37, Byte H to Byte K)
1	1											[4 bytes]
	1		H7	H6	H5	H4	H3	H2	H1	H0		
1			I7	I6	I5	I4	I3	I2	I1	10		
1	1		J7	J6	J5	J4	J3	J2	J1	J0		
1	1		K7	K6	K5	K4	K3	K2	K1	K0		

Comma	and Table)											
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description	
0	0	34	0	0	1	1	0	1	0	0	CRC calculation	CRC calculation command for OTP content validation. BUSY pad will output high during operation.	
0	0	35	0	0	1	1	0	1	0	1	CRC Status Read	CRC Status Read	
1	1		A15	A14	A13	A12	A1 1	A10	A9	A8		A[15:0] is the CRC readout Value	
1	1		A7	A6	A5	A4	A3	A2	A1	A0			
0	0	36	0	0	1	1	0	1	1	0	Program OTP selection	Program OTP Selection according to th OTP Selection Control [R37h and R38h] The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.	
0	0	37	0	0	1	1	0	1	1	1	Write Register for	Write Register for Display Option	
0	1	31	0	0	0	0	0	0	0	0	Display Option	B[7:0] Display Mode for WS[7:0]	
0	1		B7	В6	B5	B4	В3	B2	B1	В0		C[7:0] Display Mode for WS[15:8] D[7:0] Display Mode for WS[23:16]	
0	1		C7	C6	C5	C4	C3	C2	C1	C0		E[7:0] Display Mode for WS[31:24]	
0	1		D7	D6	D5	D4	D3	D2	D1	D0		F[3:0] Display Mode for WS[35:32] 0: Display Mode 1	
0	1		E7	E6	E5	E4	E3	E2	E1	E0		1: Display Mode2	
0	1		F7	F6	F5	F4	F3	F2	F1	F0		F[6]: PingPong for Display Mode 2 F[7]: PingPong for Display Mode 1	
0	1		G7	G6	G5	G4	G3	G2	G1	G0		1: Ping-Pong	
0	1		Н7	Н6	Н5	H4	Н3	H2	Н1	НО		0: Default G[7:0]~J[7:0] module ID /waveform	
0	1		I7	I6	15	I4	_I3	I2	I1	10		version.	
0	1		J7	J6	J5	J4	J3	J2	J1	J0		Remarks: A[7:0]~J[7:0] can be stored in OTP	
			,								·		
0	0	38	0	0	1	1	1	0	0	0	Write Register for User	Write Register for User ID A[7:0]]~J[7:0]: UserID [10 bytes]	
0	1		A7	A6	A5	A4	A3	A2	A1	A0	ID	Remarks: A[7:0]~J[7:0] can be stored in	
0	1		В7	В6	В5	B4	В3	B2	В1	В0		OTP	
0	1		C7	C6	C5	C4	C3	C2	C1	C0			
0	1		D7	D6	D5	D4	D3	D2	D1	D0			
0	1		E7	E6	E5	E4	E3	E2	E1	E0			
0	1		F7	F6	F5	F4	F3	F2	F1	F0			
0	1		G7	G6	G5	G4	G3	G2	G1	G0			
0	1		H7	H6	H5	H4	H3	H2	H1	H0			
0	1		I7	I6	I5	I4	I3	I2	I1	10			
0	1		J7	J6	J5	J4	J3	J2	J1	J0			

	ınd Table	1	1	ı	1	1	ı	1	1		1	1		
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description		
)	0	3A	0	0	1	1	1	0	1	0	Reserved	Reserved		
			_			1 .		T -			1 -			
)	0	3B	0	0	1	1	1	0	1	1	Reserved	Reserved		
)	0	3C	0	0	1	1	1	1	0	0	Border Waveform	Select border waveform for VBD		
0	1		A7	A6	A5	A4	0	0	Al	A0	Control	A[7:0] = C0h [POR], set VBD as HIZ. A [7:6] : Select VBD option A[7:6] : Select VBD as 00		
)	0	41	0	1	0	0	0	0	0	1	Read RAM Option	Read RAM Option		
)	1	71	0	0	0	0	0	0	0	A0	- Touch to the Option	A[0]=0 [POR]		
												0: Read RAM corresponding to 24h 1: Read RAM corresponding to 26h		
0	0	44	0	1	0	0	0	1	0	0	Set RAM X - address	Specify the start/end positions of the		
)	1		A7	A6	A5	A4	A3	A2	A1	A0	Start / End position	window address in the X direction by ar address unit for RAM		
)	1		-	-	-	-	-	-	A9	A8		A[9:0]: XSA[9:0], XStart, POR = 000h		
)	1		0	0	В5	B4	В3	B2	B1	В0		B[5:0]: XEA[9:0], XEnd, POR = 3BFh		
)	1		-	- \	-	-	-	-	В9	В8	7			

Comma	and Table	;										·
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	45	0	1	0	0	0	1	0	1	Set RAM Y-	0 :6 1
0	1		A7	A6	A5	A4	A3	A2	A1	A0	address Start / End	Specify the start/end positions of the window address in the Y direction by an
0	1		-	-	-	-	-	-	A9	A8	position	address unit for RAM
0	1		В7	В6	В5	B4	В3	В2	B1	В0		A[8:0]: YSA[8:0], YStart, POR = 000h
0	1		-	-	-	-	-	-	В9	В8		B[8:0]: YEA[8:0], YEnd, POR = 2A7h
	l.	<u>I</u>	<u>I</u>	.		ı	<u>I</u>		l		I	
0	0	46	0	1	0	0	0	1	1	0	Auto Write RED	Auto Write RED RAM for Regular Pattern
0	1		A7	A6	A5	A4	0	A2	Al	AO	RAM for Regular Pattern	A[7:0] = 00h [POR] A[7]: The 1st step value, POR = 0 A[6:4]: Step Height, POR= 000 Step of alter RAM in Y-direction according to Gate A[6:4] Height A[6:4] Height
				•	•							
0	0	47	0	1	0	0	0	1	1	1	Auto Write B/W	Auto Write B/W RAM for Regular Pattern
0	1		A7	A6	A5	A4	A3	A2	Al	A0	RAM for Regular Pattern	A[7:0] = 00h [POR] Auto Write B/W RAM for Regular Pattern A[7:0] = 00h [POR] A[6:4]

Comma	and Table	•												
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description		
0	0	4E	0	1	0	0	1	1	1	0	Set RAM X	Make initial settings for the RAM X		
0	1		A7	A6	A5	A4	A3	A2	A1	A0	address	address in the address counter (AC)		
0	1		0	0	0	0	0	0	A9	A8	counter	A[9:0]: 000h [POR].		
			•				•							
0	0	4F	0	1	0	0	1	1	1	1	Set RAM Y	Make initial settings for the RAM Y		
0	1		A7	A6	A5	A4	A3	A2	A1	A0	address	address in the address counter (AC)		
0	1		0	0	0	0	0	0	A9	A8	counter	A[9:0]: 000h [POR].		
		•			•	,	,	•	,		•			
0	0	7F	0	1	1	1	1	1	1	1	NOP	This command is an empty command; it does not have any effect on the display module. However, it can be used to terminate Frame Memory Write or Read Commands.		

6. Optical characteristics

6.1 Specifications

Measurements are made with that the illumination is under an angle of 45 degrees, the detection is perpendicular unless otherwise specified.

T=25°C

SYMBOL	PARAMETER	CONDITIONS	MIN	түр.	MAX	UNIT	Note
R	Reflectance	White	30	35	-	%	Note 6.1-1
Gn	2Grey Level	-	-	DS+(WS-DS)×n(m-1)	ı	L*	-
CR	Contrast Ratio	-	10	15	-		_
DC	Dark State L* value		-	13	14		Note 6.1-1
DS	Dark State a* value		-	3	5		Note 6.1-1
WS	White State L* value		63	65	-		Note 6.1-1
D.C.	Red State L* value	Red	25	28	-		Note 6.1-1
RS	Red State a* value	Red	36	40	-		Note 6.1-1
Panel's life	-	0°C∼40°C	4	5years	-	-	Note 6.1-2
Danal	Image Update	Storage and transportation	-	Update the white screen	-	-	-
Panel	Update Time	Operation	-	Suggest Updated once a day	-	-	-

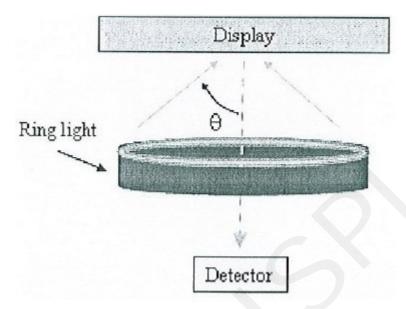
WS: White state, DS: Dark state, RS: Red state

Note 6.1-1: Luminance meter: Eye - One Pro Spectrophotometer

Note 6.1-2: We don't guarantee 5 years pixels display quality for humidity below

45%RH or above 70%RH;

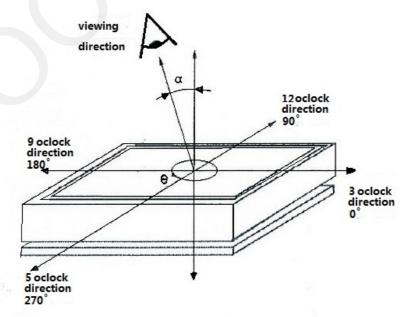
Suggest Updated once a day;



6.2 Definition of contrast ratio

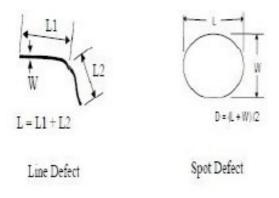
The contrast ratio (CR) is the ratio between the reflectance in a full white area (R1) and the reflectance in a dark area (Rd)():

R1: white reflectance Rd: dark reflectance

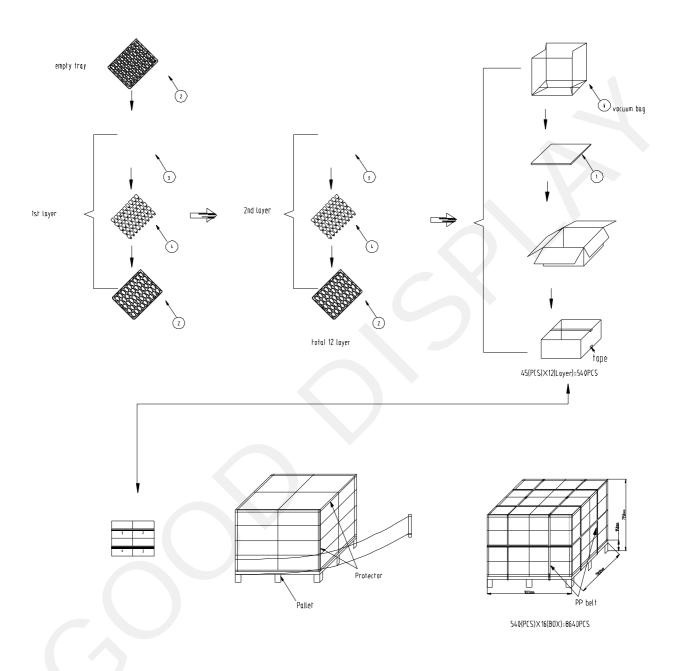

CR = R1/Rd

6.3 Reflection Ratio

The reflection ratio is expressed as:


 $R=Reflectance\ Factor\ white\ board\ x\ (L\ center\ /\ L\ white\ board\)$ L center is the luminance measured at center in a white area (R=G=B=1) . L white board is the luminance of a standard white board . Both are measured with equivalent illumination source . The viewing angle shall be no more than 2 degrees .

7. Point and line standard


		Shipment Ins	spection Standard							
	Е	quipment: Electric	cal test fixture, Point gaug	ge						
Outline dimension	170.2(H)×111.2(V) ×1.25(D)	Unit: mm	Part-A	Active area Part-B		Border area				
Environment	Temperature	Humidity	Illuminance	Distance	Angle					
Environment	19°C∼25°C	55%±5%RH	800~1300Lux	300mm	35Sec					
Defet type	Inspection method		Standard	Part-	A	Part-B				
			D≤0.2mm	Ignor	re	Ignore				
Smat	Electric Display	0.2m	m < D≤0.4mm	N≤4	1	Ignore				
Spot	Electric Display	0.4m	m < D < 0.6 mm	N≤1	N≤1					
		I	D>0.6mm	Not Al	Ignore					
Display unwork	Electric Display	N	Not Allow	Not Al	low	Ignore				
Display error	Electric Display	N	Not Allow	Not Al	low	Ignore				
Scratch or line		L≤2n	m, W≤0.1mm	Igno	re	Ignore				
defect(include	Visual/Film card	1.0mm <l≤9.0< td=""><td>0mm, 0.1≤W≤0.2mm,</td><td>N≤2</td><td colspan="3">N≤2</td></l≤9.0<>	0mm, 0.1≤W≤0.2mm,	N≤2	N≤2					
dirt)		L>9.0	mm, W>0.2mm	Not Al	Ignore					
		I	D ≤0.4mm	Ignor	Ignore					
PS Bubble	Visual/Film card	0.4m	m≤D≤0.6mm	N<	Ignore					
		D	0>0.6 mm	Not Al	Not Allow Ignore					
Side Fragment	Visual/Film card	Do not affect the electrode circuit ((Corner chipping) X \le 8mm, Y \le 1mm, Do not affect the electrode circuit, Ignore								
Remark		1.Cannot be defe	ect & failure cause by appo	earance defect;						
Kemark		2.Cannot be la	arger size cause by appear	ance defect;						
		L=long W	=wide D=point size N=	=Defects NO						

L=long W=wide D=point size

8. Packing

9. Precautions

- (1) Do not apply pressure to the EPD panel in order to prevent damaging it.
- (2) Do not connect or disconnect the interface connector while the EPD panel is in operation.
- (3) Do not touch IC bonding area. It may scratch TFT lead or damage IC function.
- (4) Please be mindful of moisture to avoid its penetration into the EPD panel, which may cause damage during operation.
- (5) If the EPD Panel / Module is not refreshed every 24 hours, a phenomena known as "Ghosting" or "Image Sticking" may occur. It is recommended to refreshed the ESL /EPD Tag every 24 hours in use case. It is recommended that customer ships or stores the ESL / EPD Tag with a completely white image to avoid this issue
- (6) High temperature, high humidity, sunlight or fluorescent light may degrade the EPD panel's performance. Please do not expose the unprotected EPD panel to high temperature, high humidity, sunlight, or fluorescent for long periods of time.
- (7) For more precautions, please click on the link: http://www.e-paper-display.com/news_detail/newsId=53.html