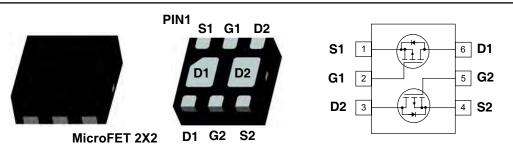


FDMA1027P Dual P-Channel PowerTrench[®] MOSFET

General Description


This device is designed specifically as a single package solution for the battery charge switch in cellular handset and other ultra-portable applications. It features two independent P-Channel MOSFETs with low on-state resistance for minimum conduction losses. When connected in the typical common source configuration, bi-directional current flow is possible.

The MicroFET 2x2 package offers exceptional thermal performance for it's physical size and is well suited to linear mode applications.

Features

- -3.0 A, -20V. $R_{DS(ON)} = 120 \text{ m}\Omega @ V_{GS} = -4.5 \text{ V}$ $R_{DS(ON)} = 160 \text{ m}\Omega @ V_{GS} = -2.5 \text{ V}$ $R_{DS(ON)} = 240 \text{ m}\Omega @ V_{GS} = -1.8 \text{ V}$
- Low Profile 0.8 mm maximun in the new package MicroFET 2x2 mm
- RoHS Compliant
- Free from halogenated compounds and antimony oxides

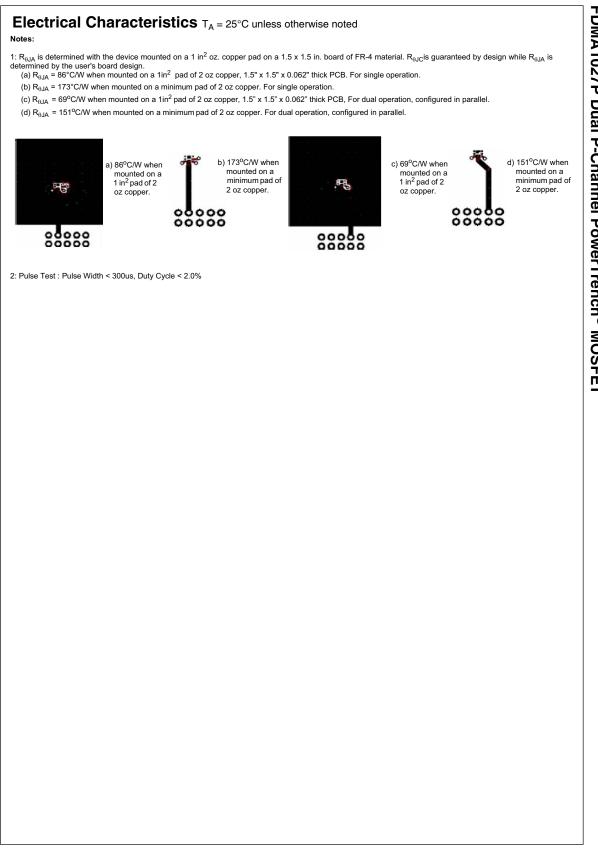
Absolute Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter		Ratings	Units
V _{DSS}	MOSFET Drain-Source Voltage		-20	V
V _{GSS}	MOSFET Gate-Source Voltage		±8	V
I _D	Drain Current -Continuous	(Note 1a)	-3.0	Α
	-Pulsed		-6	
	Power dissipation	(Note 1a)	1.4	
P _D		(Note 1b)	0.7	
		(Note 1c)	1.8	— w
		(Note 1d)	0.8	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C

Thermal Characteristics

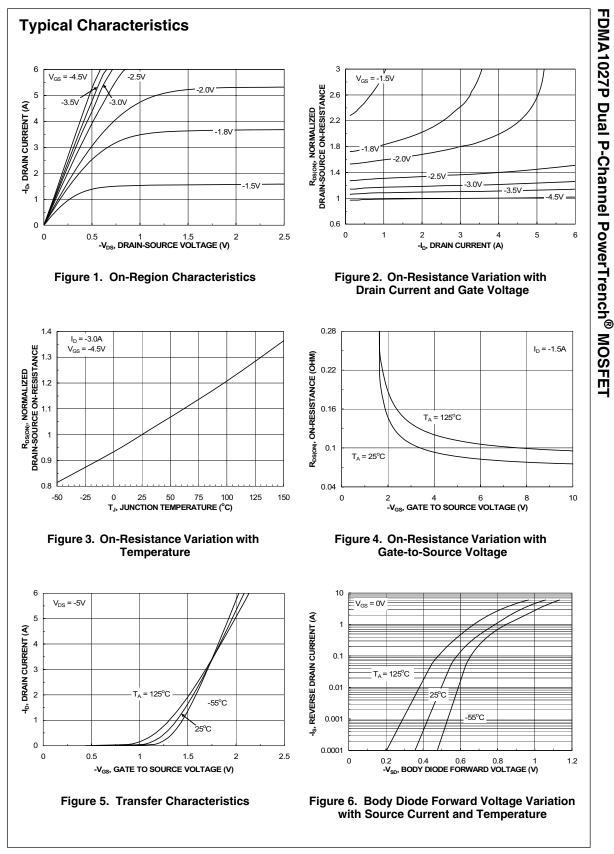
R_{\thetaJA}	Thermal Resistance for Single Operation, Junction-to-Ambient	(Note 1a)	86	
$R_{\theta JA}$	Thermal Resistance for Single Operation, Junction-to-Ambient	(Note 1b)	173	°C/W
R_{\thetaJA}	Thermal Resistance for Dual Operation, Junction-to-Ambient	(Note 1c)	69	10/10
$R_{\theta JA}$	Thermal Resistance for Dual Operation, Junction-to-Ambient	(Note 1d)	151	

Package Marking and Ordering Information

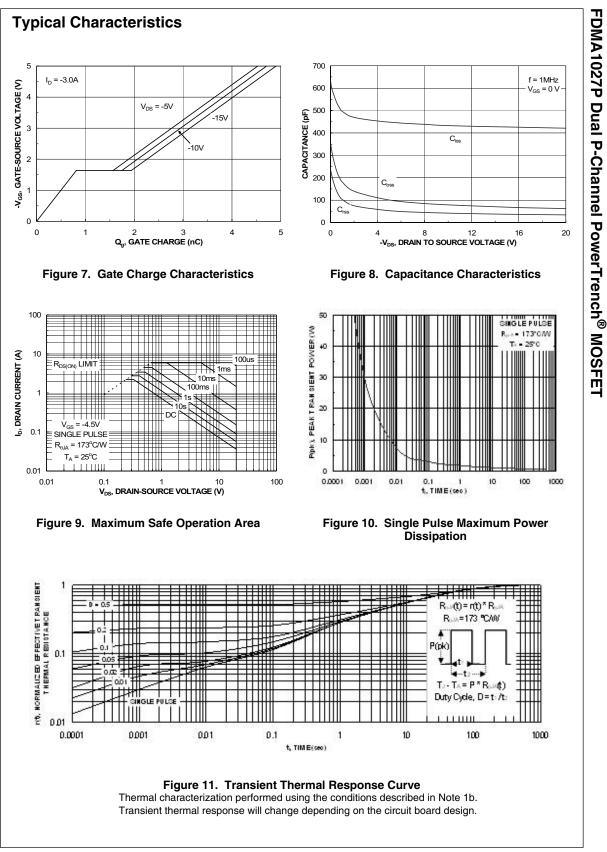

Device Marking	Device	Reel Size	Tape Width	Quantity
027	FDMA1027P	7"	8mm	3000 units

©2010 Fairchild Semiconductor Corporation

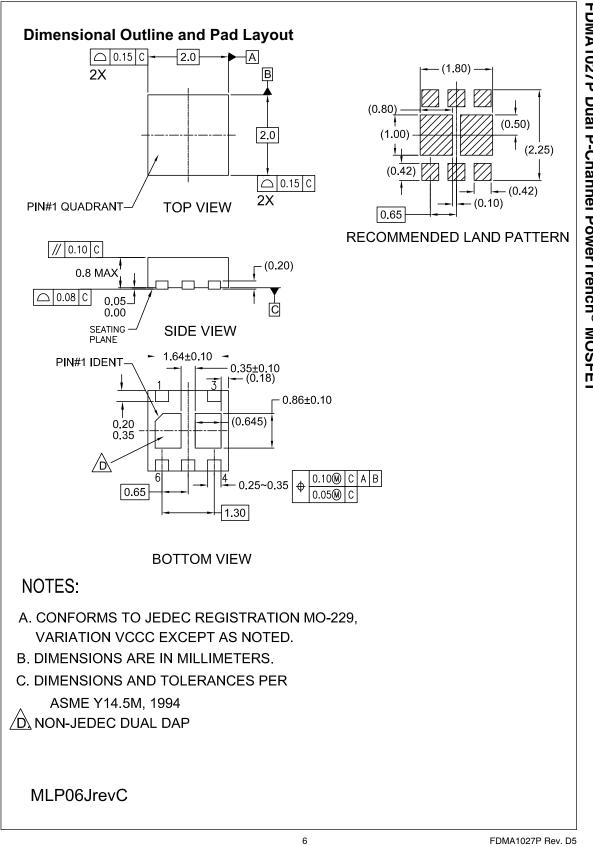
May 2010

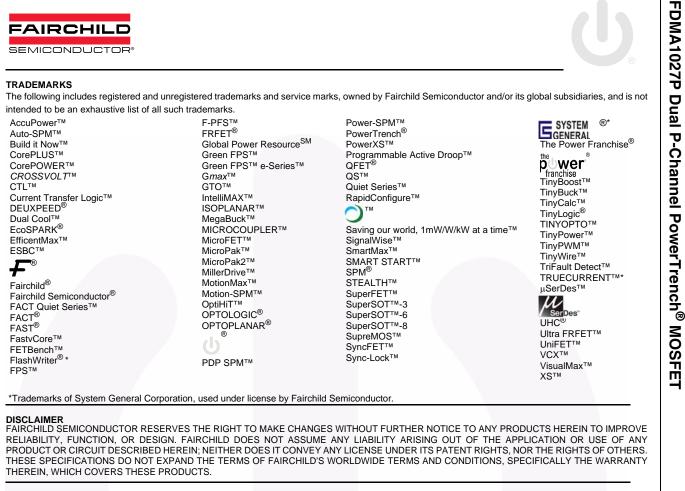

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	cteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} = 0V, I _D = -250μA	-20	-	-	V
ΔBV_{DSS}	Breakdown Voltage Temperature	$I_{\rm D} = -250 \mu {\rm A},$		10		-
ΔT_J	Coefficient	Referenced to 25°C	-	-12	-	mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -16V, V_{GS} = 0V$	-	-	-1	μA
I _{GSS}	Gate-Body Leakage,	$V_{GS} = \pm 8V, V_{DS} = 0V$	-	-	±100	nA
On Chara	cteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = -250 \mu A$	-0.4	-0.7	-1.3	V
$\Delta V_{GS(th)}$	Gate Threshold Voltage	I _D = -250μA,	-	2	-	mV/°C
ΔT_{J}	Temperature Coefficient	Referenced to 25°C				
		$V_{GS} = -4.5V, I_D = -3.0A$	-	90	120	_
D	Statia Drain Sauras On Desistance	$V_{GS} = -2.5V, I_D = -2.5A$	-	120	160	-
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = -1.8V, I_D = -1.0A$	-	172	240	mΩ
		V _{GS} = -4.5V, I _D = -3.0A T _J = 125°C	-	118	160	
I _{D(on)}	On-State Drain Current	V _{GS} = -4.5V, V _{DS} = -5V	-20	-	-	A
9 _{FS}	Forward Transconductance	$V_{DS} = -5V, I_D = -3.0A$	-	7	-	S
Dynamic	Characteristics					
C _{iss}	Input Capacitance		-	435	-	pF
C _{oss}	Output Capacitance	$-V_{DS} = -10V, V_{GS} = 0V,$	-	80	-	pF
- 055		f = 1.0MHz				Ie .
C _{rss} Switching	Reverse Transfer Capacitance g Characteristics (Note 2)		-	45	-	pF
C _{rss} Switching t _{d(on)}	Turn-On Delay Time	 	-	45 9 11	- 18 19	pF ns ns
C _{rss} Switching t _{d(on)} t _r	Characteristics (Note 2) Turn-On Delay Time Turn-On Rise Time	$V_{DD} = -10V, I_D = -1A$ $V_{GS} = -4.5V, R_{GEN} = 6\Omega$		9	- 18 19 27	ns
C _{rss} Switching t _{d(on)} t _r t _{d(off)}	Turn-On Delay Time		-	9 11	19	ns ns
C _{rss} Switching t _{d(on)} t _r t _{d(off)} t _f	Characteristics (Note 2) Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time	$V_{GS} = -4.5V, R_{GEN} = 6\Omega$	-	9 11 15	19 27	ns ns ns
$\frac{C_{rss}}{Switching}$ $\frac{t_{d(on)}}{t_r}$ $\frac{t_{d(off)}}{t_f}$ Q_g	Characteristics (Note 2) Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time	$V_{GS} = -4.5V, R_{GEN} = 6\Omega$ $V_{DS} = -10V, I_D = -3.0A,$	-	9 11 15 6	19 27 12	ns ns ns ns
C _{rss} Switching t _{d(on)} t _r t _{d(off)} t _f Q _g Q _{gs}	g Characteristics (Note 2) Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge	$V_{GS} = -4.5V, R_{GEN} = 6\Omega$	-	9 11 15 6 4	19 27 12	ns ns ns ns nC
C _{rss} Switching t _{d(on)} t _r t _{d(off)} t _f Q _g Q _{gs} Q _{gd}	g Characteristics (Note 2) Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge	$V_{GS} = -4.5V, R_{GEN} = 6\Omega$ - $V_{DS} = -10V, I_D = -3.0A,$ - $V_{GS} = -4.5V$	- - - -	9 11 15 6 4 0.8	19 27 12	ns ns ns nC nC
$\frac{C_{rss}}{Switching}$ $\frac{t_{d(on)}}{t_r}$ $\frac{t_{d(off)}}{t_f}$ Q_g Q_{gs} Q_{gd} Drain-Sou	Characteristics (Note 2) Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge	$V_{GS} = -4.5V, R_{GEN} = 6\Omega$ $V_{DS} = -10V, I_D = -3.0A,$ $V_{GS} = -4.5V$ Maximum Ratings	- - - -	9 11 15 6 4 0.8	19 27 12	ns ns ns nC nC
$\frac{C_{rss}}{Switching}$ $\frac{t_{d(on)}}{t_r}$ $\frac{t_{d(off)}}{t_f}$ Q_g Q_{gg} Q_{gg} Drain-Sou	g Characteristics (Note 2) Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Urce Diode Characteristics and	$V_{GS} = -4.5V, R_{GEN} = 6\Omega$ $V_{DS} = -10V, I_D = -3.0A,$ $V_{GS} = -4.5V$ Maximum Ratings de Forward Current	- - - -	9 11 15 6 4 0.8 0.9	19 27 12 6 -	ns ns ns nC nC nC
$\frac{C_{rss}}{Switching}$ $\frac{t_{d(on)}}{t_r}$ $\frac{t_{d(off)}}{t_f}$ Q_g Q_{gs} Q_{gd} Drain-Sou	g Characteristics (Note 2) Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge urce Diode Characteristics and Maximum Continuous Drain-Source Dio	$V_{GS} = -4.5V, R_{GEN} = 6\Omega$ $V_{DS} = -10V, I_D = -3.0A,$ $V_{GS} = -4.5V$ Maximum Ratings	- - - - - -	9 11 15 6 4 0.8 0.9	19 27 12 6 - -	ns ns ns nC nC nC

FDMA1027P Dual P-Channel PowerTrench[®] MOSFET



FDMA1027P Dual P-Channel PowerTrench[®] MOSFET


FDMA1027P Rev.D5


FDMA1027P Rev. D5

FDMA1027P Rev. D5

FDMA1027P Dual P-Channel PowerTrench[®] MOSFET

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary First Production		Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed Full Production		Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete Not In Production		Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

Rev. 148